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SUMMARY IPv6 has been attracting much attention as a
drastic countermeasure for severe shortage of addresses on the
Internet. Linux, one of operating systems, also supports IPv6.
However, the quality of the protocol stack was not so good. In
this study, we worked out an architectural design for this ba-
sic software in Linux. Specifically, we introduce compound data
oriented processing in network stack, which simplifies data ob-
ject management and relationship between object. We show the
quantitative research shows that the quality of protocol stack of
IPv6 has been greatly improved.
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1. Introduction

The Internet Protocol Version 4 (IPv4)[10] has been
the fundamental protocol in the Internet for long time.
However, several grave issues have arisen for ten years
since it was developed. For instance, severe shortage
of address space was expected. Internet Protocol Ver-
sion 6 (IPv6)[1], so called as “Next Generation Internet
Protocol (IPng)”, was designed to solve the problems
of the traditional Internet Protocol, Version 4.

The specification of IPv6 has almost fixed at the
IETF[13]. After the IPv6 technology being put on its
experimental stage, a lot of network appliance and soft-
ware vendors are now supporting it, and commercial
service by Internet Service Providers is also available.
Now, IPv6 is reaching practical stage with product
quality.

Linux IPv6 protocol stack is not really new; it has
been available since early Linux 2.1.x days in 1996.
However, once it was integrated into the mainline ker-
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nel, it was not so actively developed while situation and
specification were changed.

In 2000, USAGI Project[15] was established by
WIDE Project[16] and several hackers, who had lead
Linux IPv6 Users JP joined the Project. The Project
studies and develops on subject from kernel to user
space to provide high quality and up-to-date implemen-
tation to the world.

According to the research by the Project, we found
issues in Linux IPv6 stack. the architecture is too com-
plex to keep them all right.

In this paper, we describes the new architectures
to make Linux conform well to specifications by IETF.
Specifically, we introduce compound data oriented pro-
cessing scheme. This scheme is with simple, self-
managed data object and compound of them. We de-
scribe how our high quality protocol stack is realized in
this scheme.

2. Neighbor Discovery

Neighbor Discovery (ND) is one of core elements of
IPv6 and known that it consists of Router and Prefix
Discovery, Address Resolution and Neighbor Unreach-
ability Detection and Redirect [9], [14]. They are essen-
tial to keep stable communication, and requires accu-
rate timer and state management by various events on
network. For example, Address Resolution and Neigh-
bor Unreachability Detection use Neighbor Cache En-
try (NCE) in its concept and it is required to keep
the timer accurate to manage reachability of neighbors
properly.

In the previous implementation, NCE was man-
aged by periodic polling timer and timer inside the en-
try. The reachability was managed in the following two
ways (Figure 1).

Periodic timer
Periodic timer (30 seconds) invokes management
task, which checks reachability of every node. It
also clean-up entries in the table.

Entry-internal timer
Dynamic timer inside the entry invokes manage-
ment task for itself in semi-reachable states. The
timeout depends on the state.
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Fig. 1 Linux NDP Table with complex timer
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Fig. 2 USAGI NDP Table with Dynamic Timers

Table 1 TAHI Conformance Test Result of NCE Management
(PASS Ratio)

Linux 2.4.18 USAGI 2.4 KAME/FreeBSD 4
39% 89% 98%

. Protocol requires accuracy of few seconds for all
states, the former results in inaccurate state manage-
ment. Furthermore, state management was split and
resource management was complex.

Therefore, we redesigned NCE management. We
split the management task including timers and mu-
tual exclusion (locks), for state management (Figure
2). Each entry has it own dynamic timer and lock for
state transition and it is responsible for its own state
transition; in short, each NCE is self-managed. On the
other hand, periodic timer is not used for state man-
agement, and it is only used for garbage collection.

In this architecture, the tasks under the global lock
are simplified. Resource managements for neighbors
including mutual exclusion are also greatly simplified.
As the results of NCE management in Table 1 shows, it
becomes possible to exchange messages correspondent
to the status of each NDP entry as defined in the NDP
specifications.

3. Routing Table

Linux IPv6 routing table, as known as “Forwarding
Information Base,” is constructed by Radix Tree[12].
A Radix Tree is built with internal nodes and leaves,
which are nodes marked with RTN RTINFO. Every node
represents a bit position to test. And each leaf has a
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Fig. 3 Linux Routing Table
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Fig. 4 Linux IPv6 Routing Table Structure

linked list which stores actual routing information, such
as nexthop (Figure 3), which is actually represented as
NCE. The elements in the linked list are chained in
numerical order of metric. Linux IPv6 routing table
supports equal-cost multiple paths.

3.1 Default Routers Management

Neighbor Discovery for IP Version 6 (IPv6) [9] in-
troduces conceptual data structure as known as “De-
fault Router List,” which holds information of “default
routers” advertised via Router Advertisement mes-
sages.

Linux does not have separate “Default Router
List” structure. It holds the default routers as a kind
of routes to ::/0, instead of holding the information in
separate list.

However, as shown in Figure 4, Linux IPv6 proto-
col stack has a radix tree with fixed node information
on the top and it points to ipv6 null entry. There-
fore, when default route is added, the information is at-
tached at the next of the rt6 info{} structure which
contains ipv6 null entry. This causes default route
not to be referred.

In USAGI implementation, we replace the
ipv6 null entry with the new entry when adding a
new routing entry on the top level root of the tree
(Figure 5). When the last route is being deleted
from the the top level root of the tree, we re-insert
ipv6 null entry. This means, we actually treat the
“default routes” which hold information regarding “De-
fault Routers” as normal routes. And now, we can
naturally insert and remove the “default route” entries
properly to/from the routing table as we can do for
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Fig. 5 USAGI IPv6 Routing Table Structure
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Fig. 6 Default Routers in Linux

other normal routes.

3.2 Router Precedence Management

As mentioned before, the default routers are stored
on the top level root node of the routing tree (Fig-
ure 6). It is called “Default Router Selection” to
pick one default router from the default router list.
In Default Router Selection, it does round-robin the
default router list when it becomes unreachable. To
achieve this in Linux, the default router was pointed
by rt6 dflt pointer, which is guarded by the global
lock named rt6 dflt lock, and updated when router
is unreachable(Figure 6).

In this implementation, there were several issues.

Unfairness
rt6 dflt pointer is reset when routing is modi-
fied; this happens very often and routers are not
equally selected.

Lack of Generic route selection
rt6 dflt pointer was only for the default routes;
The logic could not apply to generic route selec-
tions; we need to have generic way to select one
from multiple routes to support improved router
selection strategy such as “Default Router Pref-
erences, More-Specific Routes, and Load Shar-
ing” [2].

Metrics
Linux treated metrics in other way than normal
routes. Now we treat default routes like normal
routes, it is the time to eliminate special handling
of metrics of default routes.

To solve these issues, we introduced a new generic
round-robin code for the routes with same metrics. We
do round-robin for routes with same metrics when a

::/0

RTN_RTINFO

fib6_node

same metrics

rt6_info
metrics

Fig. 7 New Method for Route Round-robin

route in that set is used (Figure 7). When a route
is looked up, use the first entry which is in “probably
reachable” state in conjunction with NCE in the next-
hop entry and relink it at the tail of the entries with
same metrics. In this way, the rt6 dflt pointer and
rt6 dflt lock are eliminated. This logic can apply
to not only the default routes but also other generic
routes.

The “Router Selection” draft [2] also introduces
the concept of “preference” of routes. The routers
advertise 2-bit preferences of routes with Router Ad-
vertisement message, and hosts select more preferred
routers.

To implement this, we stores preference (2 bit) of
routes into the flags of the routing informations instead
of reflecting it to the metrics. This is to separate this
attribute from metrics to simplify other logic, for ex-
ample to avoid fixing up routing table when receiving
RA.

Finally, when a route is looked up, use the first
entry with highest preference is in “probably reachable”
state in conjunction with NCE in the nexthop entry and
relink it at the tail of the entries with same metrics.

This is the way how we improved routing opera-
tion including default routes and router selections using
compound data structure oriented scheme in conjunc-
tion with NCE; objects are self-managed and data com-
pound represents data relationship.

4. IP Packet Transformer

The role of IP is to transfer datagrams from source
to destination. In traditional manner, it is enough to
carry it in as-is way. Today, however, keeping security
becomes important.

In order to support these requirements with min-
imum impact against users, IP layers are required to
be changed. Now, they not only transfer datagrams
from one to another, but also flexibly “transforms” its
format. For example, IP layer will encrypt / decrypt
packets to keep security. It also appends authentica-
tion (or integrity check) data etc. These are all kinds
of “transformations.”

4.1 Stackable Destination and XFRM

A new framework for IP packet processing has been
introduced into linux-2.5.x to implement IPsec, e.g.
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Authentication Header[6] and Encapsulating Security
Payload[7]. It is called XFRM and “Stackable Destina-
tion.”

XFRM stands for transformer. Its fundamental
data structures are xfrm policy{} and xfrm state{}.
Each represents IPsec Policy (SP) and Security As-
sociation (SA) respectively. Thus, Security Policy
Database (SPD) consists of xfrm policy{}. Similarly,
Security Association Database (SAD) is consists of
xfrm state{}. An xfrm state{} is associated with
xfrm policy{} via xfrm tmpl{}, which represents tem-
plate for packet transformation.

Stackable destination is the infrastructure for
packet transformation in the output path. It looks like
a kind of linked list of dst{}, the protocol indepen-
dent destination cache. This list is created temporalily
and cached according to the policy. dst{} has its own
output method output and it transforms the packet in
conjunction with xfrm state{}, which represents state
of transformer.

The netlink[11] infrastructure is used as fundamen-
tal user interface to maintain SAD and SPD. In addi-
tion to this native interface, the standardized PF KEY[8]
interface, which is for SAD, is supported, and for SPD,
PF KEY KAME [5] extension is supported.

4.2 AF Independent XFRM Infrastructure

Since core functionality of the XFRM engine is common
among address families (e.g. IPv6 or IPv4). AF inde-
pendent XFRM infrastructure has been introduced.

Instance of AF specific XFRM engine is instanti-
ated by registering AF specific information tables, e.g.
xfrm policy afinfo{} and xfrm state afinfo{}. to
the core XFRM engine. e.g. xfrm policy afinfo{}
and xfrm state afinfo{}. Common variables are also
passed via the tables.

4.3 Packet Processing Details

In this section, we describe details of packet processing.

4.3.1 Output Path

The output process of IPsec fully uses this architecture.
The sequence of calling functions are xfrm lookup(),
xfrm tmpl resolve(), xfrm bundle create() and
dst output().

First, xfrm lookup() looks up xfrm policy{} in
SPD after routing resolution. At the moment the pa-
rameter dst{} in the stack points original dst{} struc-
ture. xfrm tmpl resolve() is called in xfrm lookup()
to resolve xfrm tmpl{} in xfrm policy{} which rep-
resents how the packet is processed and finds set of
xfrm state{} for it. This process corresponds to look-
ing up IPsec SA or IPsec SA bundle matched with IPsec
policy.

Output Packet Processing

xfrm_tmpl
xfrm_tmpl
xfrm_state

xfrm_policy xfrm_tmpl
xfrm_tmpl
xfrm_tmpl

original_dstsk_buff

xfrm_bunele_create
Connect xfrm_state with the dst and
create stackable destination

Look up xfrm_state with comparing
with xfrm_tmpl in the policyxfrm_tmpl_resolv

Find xfrm_policy as IPsec policy
xfrm_lookup

Lookup Routing Table
ip6_route_output

dstsk_buff

dst

original dst

XXX_output

XXX_output

XXX_output

Fig. 8 IPsec output process

Then, xfrm bundle create() creates the stack-
able destination. This corresponds to creating IPsec
SA (or SA bundle if multiple SA are needed).

Finally, dst output() is called after building up
the packet. Each output routine specified by the func-
tion pointer in the dst{} is called along with the chain
of dst{} by popping up the dst{}. This pointer points
esp6 output() etc. The output function is able to use
xfrm state{} from dst{} pointer in sk buff{}. And
at last, the origial dst{}’s output function is called.

4.4 Input Path

The input process for IPsec is more simple than output.
As all extension header handlers and protocol han-

dlers are registered with inet6 protos[] at its initial-
ization phase, processing routines for AH and ESP are
also registered to inet6 protos[] at initiation.

When a packet is reached input hander, The kernel
parse it from the head, and call the hander according
to the registration table.

Each handler of IPsec protocol looks up xfrm state{}
and processes it. If it succeeds, used xfrm state{}
pointer is kept in sec path{} in sk buff{} which con-
tains the packet.

Finally, xfrm policy check() is called at the
entrance of upper layer process. it compares
xfrm tmpl{} in xfrm policy{} and xfrm state{} kept
in sec path{} to determine if it is allowed to be deliv-
ered.

4.5 Test Results

On 24th April, 2003, Tom Lendacky reported to netdev
mailing list that Test results of Linux-2.5 IPsec are very
excellent(Table 2).
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Input Packet Processing
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Fig. 9 IPsec input process

We have tried to fix the bugs in IPv6 IPsec frag-
mentation, and they should be fixed for now.

Table 2 Summary of TAHI Conformance Test (linux-2.5.58,
%)

Test Series Pass Warn Fail

ipsec 95 2 3
ipsec4 98 2 0

ipsec4-udp 96 4 0

4.6 Future Evolution

The XFRM infrastructure and the Stackable Destina-
tion are the promising schemes. For example, Mobile
IPv6[4] is feasible.

Figure 10 shows the prototype diagram for Mobil-
ity support using XFRM / Stackable Destination in-
frastructure.

In this prototype, we introduce another set of pol-
icy for Mobile IP. This policy controlled by mobility
daemon in user space based on Binding Update. It
describes the type of transformation (e.g. appending
Home Address Option in the destination option header
etc.) and its corresponding binding data (i.e. Care-of
Address and Home Address).

The xfrm bundle create() compiles multiple
templates into the single stackable destination, tak-
ing account of the flow of the process. Assuming
co-existence of AH, ESP and Mobile IP, AH requires
full packet. However, source address in the packet
should be home address. Thus, the Stakable Destina-
tion should be constructed as follows.

• Mobile-IP Dest1, which inserts Care-of Address
into the packet.

• Mobile-IP Rthdr, which inserts routing header
(type 2) into the packet.

Output Packet Processing
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Fig. 10 Mobile IP using XFRM / Stackable Destination
Scheme

• ESP, which ecrypts the packet after the destination
header for Home-Address option.

• AH, which generates authentication data for
packet and insert it after the destination header.

• Mobile-IP Dest2, which swaps Care-of Address and
Home Address in the packet.

In this way, complex packet will be constructed in these
schemes.

5. Conclusion

In this paper, we describes the architecture of USAGI
IPv6 networking stack. While USAGI software was
developed based upon original Linux, we introduced
new compound data oriented architecture to various
area. This idea is to make some object simple and
self-managed, and the compound of the object repre-
sents complexed processing. NCE in Neighbor Dis-
covery manges itself. In routing area, Routing Entry
is corresponded with the NCE, and the reachability is
managed by NCE itself. Preference of router is orga-
nized itself within the compound of the routing objects.
On the other hand, each IP packet transformer is rep-
resented by a object, and the chain of object called
“stackable destinaiton” enables us flexible transforma-
tion. This idea totally enables us to achieve natural
and high quality protocol stack.

Our product is widely and freely available under
open source license, and which can be used with various
kinds of Linux systems.

Finally, we list future items.

• Policy routing, which realizes routing not only by
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destination address but also by the source address,
traffic class, etc. This also affects the source ad-
dress selection [3] algorithm.

• New security architecture for real end-to-end com-
munication.

• More contribution to mainline kernel based on
wide knowledge, as one of co-maintainer of Linux
kernel networking stuff.

We will continue studying on architecture from ba-
sic to application. We continue providing high quality
implementation widely to deploy IPv6, and contribut-
ing IETF standardization process.
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