
P2PNIC: High-Speed Packet Forwarding by
Direct Communication between NICs

Yukito Ueno
The University of Tokyo
/ NTT Communications

Tokyo, Japan
eden@g.ecc.u-tokyo.ac.jp

Ryo Nakamura
The University of Tokyo

Tokyo, Japan
upa@nc.u-tokyo.ac.jp

Yohei Kuga
The University of Tokyo

Tokyo, Japan
sora@nc.u-tokyo.ac.jp

Hiroshi Esaki
The University of Tokyo

Tokyo, Japan
hiroshi@wide.ad.jp

Abstract—Against the background of the contiguous growth of
the Internet and data center traffic, the performance requirement
for software middleboxes is increasing rapidly. Although their
performance has been improved by continuous research and
development, their packet forwarding architecture depends on
the CPU and the main memory. Thus, their throughput cannot
exceed the limit of the memory bandwidth, for instance. To
address these limits, we propose a novel packet forwarding archi-
tecture called P2PNIC. In P2PNIC, a NIC directly communicates
with other NICs through the PCIe interconnect without CPU and
main memory involvement, like the inter-linecard communication
in a hardware router. To show the feasibility and the performance
advantages of P2PNIC architecture, we implemented P2PNIC
on a programmable 40 GbE NIC and compared the throughput
and latency with TestPMD, which is an application of DPDK.
The evaluation shows that P2PNIC achieves 40.37 Mpps for
64-byte packets, which is 1.45 times higher than TestPMD. In
addition, P2PNIC shows 36% lower latency than TestPMD for
64-byte packets with 1 Gbps background traffic. The P2PNIC
architecture accelerates packet forwarding on a general-purpose
server and advances software-based network technologies.

Index Terms—Ethernet NIC, packet forwarding, PCIe, Peer-
to-Peer DMA

I. INTRODUCTION

The rapid and contiguous growth of the traffic volume in
career backbone and data center demand high-speed routers
in both hardware and software. In commercial networks,
hardware routers have been used as an inevitable choice that
can achieve the required throughput. Hardware routers are
composed of multiple boards with integrated Ethernet ports
called linecards, connected by a switching fabric. In general,
they can accommodate 32–48 100 Gbps ports in the wire-
rate. On the other hand, nowadays, software middleboxes have
increasingly been used [1], [2] for new applications such as
network virtualization and cloud services. The throughput of
software middleboxes can accommodate several 100 Gbps
ports in the wire-rate [3].

Although the performance of software middleboxes has
been improved by continuous research and development [4]–
[6], their throughput and latency have not reached the grade of
hardware routers yet. Software middleboxes run on a general-
purpose server; the host CPU processes all packets, and thus
the packets must be placed on the main memory at least once,

This work was supported by JSPS KAKENHI Grant Number JP20K19781.

CPU-driven architecture P2PNIC architecture

CPU

Root complex Main
memory

NICNIC

PCIe switch

CPU

Root complex Main
memory

NICNIC

Packet transfer Packet transfer

Fig. 1. Comparison of current packet forwarding architecture and P2PNIC.

as shown on the left-hand side of Figure 1. We refer to this way
as CPU-driven architecture. As an example of potential limits
in this architecture, the bandwidth of the main memory could
limit the throughput of packet forwarding. The current DRAM
(DDR4 SDRAM PC4-34100) for servers can provide a band-
width of 34.1 GB/s, which is insufficient for accommodating
more than two 100 Gbps ports with two memory channels and
more than five 100 Gbps ports with four memory channels.
Therefore, this approach cannot accommodate a higher-speed
or a greater number of ports.

To address these potential limits, we propose a novel
architecture called P2PNIC, where Ethernet NIC itself drives
packet forwarding without the involvement of CPU and main
memory on a general-purpose server. In this architecture,
each NIC behaves like a linecard in hardware routers; each
NIC transfers packets to the opposite NIC by issuing Direct
Memory Access (DMA) for the packet data, as shown on
the right-hand side of Figure 1. The P2PNIC architecture can
address the potential limits of CPU-driven architecture because
its throughput is not affected by the main memory and CPU
capacity. Instead of the main memory and CPU, the PCIe
bandwidth between NICs is dominant for the throughput in
P2PNIC. With a single PCIe switch, P2PNIC can provide
an aggregated bandwidth that is sufficient for 12 100 Gbps
ports, while the throughput can be scaled easily by optimizing
the PCIe composition. In this work, we have implemented
and evaluated the P2PNIC architecture with some variants
on SmartNICs [7]. The evaluation shows 1.45 times higher
throughput and 36% lower latency compared with a DPDK

application, which represents the performance of CPU-driven
architecture. The contributions of this paper are as follows:

• We propose a novel architecture called P2PNIC, where
a NIC directly communicates with other NICs for fast
packet forwarding inside a general-purpose server.

• We demonstrate the feasibility of the P2PNIC architec-
ture by implementing prototypes on SmartNICs, and the
evaluation shows that the implementation has 1.45 times
higher throughput and 36% lower latency compared with
a DPDK application.

II. RELATED WORK AND PROBLEM DESCRIPTION

Despite the continuous improvements to date, the current
packet forwarding architecture on general-purpose servers can-
not exceed the performance of the hardware routers. In career
backbone networks, the conventional approach to achieve
high-performance packet forwarding is to use dedicated ASIC
chips and fabrics in hardware equipment [8]. In ASIC-based
hardware routers, each linecard communicates with other
linecards independently. The distributed communication form
contributes to the scalability of the total throughput in the
equipment. As a result, the throughput capacity of hardware
routers is sufficient for 32–64 of 100G ports, which is adequate
for the demand in today’s career backbone and data centers.

On the other hand, software middleboxes require high-
performance packet forwarding on a general-purpose server.
The software middleboxes process all packets by the host
CPU, as shown on the left side of Figure 1, and thus we refer to
this as CPU-driven architecture. Here, the CPU sends/receives
packets to/from NICs through the PCIe interconnect. In this
architecture, a variety of methods have been proposed [4],
[9], [10] to improve the performance of packet forwarding. In
particular, with the recently proposed high-speed packet I/O
technologies [5], [6], the packet forwarding performance of
the CPU-driven architecture has been dramatically improved.

However, the evolution of network link speed is reveal-
ing potential limits in the CPU-driven architecture, which is
caused by the unavoidable involvement of the CPU and main
memory in packet forwarding. For example, the current mem-
ory (DDR4 SDRAM PC4-34100) cannot provide sufficient
bandwidth for more than two 100 Gbps ports with two memory
channels and five 100 Gbps ports with four memory channels.

Moreover, the processing capacity of the CPU would be
the next bottleneck for packet forwarding in this architecture.
By using the current top-grade CPU with 28 cores, accommo-
dating a single 100 Gbps port requires more than two CPU
cores [3]. In this case, the CPU can accommodate 14 100
Gbps ports at most; thus, accommodating 48 100 Gbps ports,
which is common in hardware routers, requires more than 96
CPU cores. However, nowadays, it is not easy to increase the
processing capacity of a single CPU core and the number of
CPU cores [11]. As another consideration, the number of PCIe
lanes a root complex in a CPU has could be a bottleneck in
this architecture. For example, Intel Xeon CPU has 64 PCIe
lanes at most, which is equivalent to only four 100 Gbps
ports. In summary, the bandwidth of the main memory and

the processing capacity of the CPU would limit the potential
performance of the CPU-driven architecture.

III. PROPOSED METHOD

To address the potential limits of the CPU-driven packet
forwarding architecture, we propose a novel packet forwarding
architecture called P2PNIC. The P2PNIC architecture is NIC-
driven; a NIC directly transfers packets to other NICs, like
the inter-linecard communication in a hardware router, as
illustrated on the right-hand side of Figure 1. In general, the
NIC transfers packets to main memory over PCIe interconnect.
The communication between the NIC and the main memory
is called Direct Memory Access (DMA). On the other hand,
for the specification, the target memory region of DMA is
not limited to the main memory, as long as it is mapped into
the physical address space. By exploiting this specification,
in P2PNIC architecture, the NIC directly communicates with
other NICs by issuing DMA destined for the memory region
on other NICs. The form of DMA is called Peer-to-Peer DMA
(P2P DMA) [12], [13], and the P2PNIC architecture is the first
scheme that adopts the P2P DMA between Ethernet NICs to
accelerate packet forwarding.

By adopting P2PNIC architecture, we can overcome the
potential limits of the CPU-driven architecture because, in
P2PNIC architecture, the throughput is not affected by the
bandwidth of main memory and the processing capacity of
the CPU. In addition, P2PNIC reduces latency by halving the
number of DMAs. The CPU-driven architecture requires DMA
to be issued twice to forward a packet; a NIC that received a
packet issues DMA Write to transfer the packet to the main
memory, and another NIC to send the packet issues DMA Read
to retrieve the packet from the main memory. In contrast to
the CPU-driven architecture, the P2PNIC architecture requires
a single DMA to forward a packet; in one of the variants of
P2PNIC, the NIC that received a packet issues DMA Write to
transfer the packet to the opposite NIC.

In P2PNIC, the throughput capacity of packet forwarding
can be scaled by optimizing the composition of PCIe with
PCIe switches and the root complex of the CPU. For example,
by connecting two PCIe switches through the root complex,
the achievable throughput between the NICs in the same PCIe
switches can be doubled, although the root complex constrains
the inter-PCIe-switch traffic. As an example of components,
the current highest grade PCIe switch has 96 lanes [14], which
can provide an aggregated bandwidth that can accommodate
12 100 Gbps ports. The root complex in a CPU can also be a
component; the current highest grade has 128 lanes [15] and
can provide an aggregated bandwidth equivalent to 16 100
Gbps ports.

A. Difference between CPU-driven and P2PNIC architecture

A common NIC manages packet I/O through the queues
allocated on the main memory, as shown on the left-hand
side of Figure 2. The common NIC has Ethernet ports, PCIe
endpoint, and small internal memory for buffering packets as
its components. The NIC receives packets from its Ethernet

PCIe endpoint

Device memory

Buffer for
DMA

Ethernet port

Descriptor
ring

PCIe endpoint

Device memory

Internal
Buffer

Ethernet port

PCIe endpoint

Device memory

Internal
Buffer

Ethernet port

Root complex

Driver

Buffer for
DMA

Descriptor
rings

Main memory
CPU

Root complex

CPU

Descriptor processing by driver Packet transfer by NICs

Main memory

NIC NIC NIC NIC

CPU-driven architecture P2PNIC architecture

Driver

PCIe endpoint

Device memory

Internal
Buffer

Ethernet port

Descriptor
ring

PCIe Switch

...

...

Fig. 2. Components and behavior of CPU-driven and P2PNIC architecture.

port and transfers the packets to the main memory through
the PCIe interconnect. Conversely, the NIC sends packets to
its Ethernet port after retrieving the packets from the main
memory through the PCIe interconnect. For the packet transfer
between CPU and NICs, a ring buffer is used [16]. Each
element of the ring buffer contains the metadata that describes
a single packet; the element is called a descriptor, and the
entire ring buffer is called a descriptor ring. The descriptor ring
for CPU-NIC communication is placed on the main memory
and updated by both host CPU and NIC.

The driver, the software to manage NICs, is required for
packet transfer between CPU and NIC. The driver initializes
the NIC by informing it of various parameters through the
configuration register. The driver also manages the descriptor
ring. The basic procedure of the communication between CPU
and NIC is as follows. Prior to receiving the packet, the driver
informs the NIC of the memory address for the packet buffer
on the main memory through the descriptor ring. Then when
the NIC receives a packet, the NIC issues DMA Write to
transfer the packet to the memory region. On the other hand,
for sending, the driver informs the NIC of the memory address
for the packet buffer on the main memory. Then the NIC issues
DMA Read to retrieve the packets and sends them.

In P2PNIC, the NIC processes packet forwarding with the
descriptor ring and the DMA buffer, which are not on the main
memory as with the CPU-driven architecture but on the device
memory inside the NIC, as shown on the right-hand side of
Figure 2. The NIC transfers packets to the device memory
of the opposite NIC through the PCIe interconnect. P2PNIC
adopts the descriptor ring for the inter-NIC communication
as with common NICs. The descriptor ring has to be placed
on the device memory of each NIC to achieve direct packet
transfer between NICs without main memory involvement.
In addition to the descriptor ring, the corresponding packet
buffer has also to be placed on the device memory of each
NIC. Therefore, the NIC must have sufficient memory for the
descriptor ring and packet buffer.

The driver of P2PNIC initializes each NIC as with common
NICs but is not involved in the packet I/O. To communicate
with other NICs, the NIC has to know the physical addresses of

(1) Transfer a packet by
DMA Write

(3) Report completion of
sending by DMA Write

(2) Report arrival of the
packet by DMA Write

Rx
 P

or
t

Packet

... Buffer for DMA

Descriptor ring

Tx
 P

or
t

P2PNIC by DMA Write

P2PNIC by DMA Read

(3) Report completion of
sending by DMA Write

(1) Report arrival of a
packet by DMA Write

Rx
 P

or
t ...

Descriptor ring

Tx
 P

or
t

(2) Retrieve the packet by
DMA Read

Buffer for DMA

Descriptor ring

Descriptor ring

NIC NIC

NICNIC

Packet Packet

Packet

Fig. 3. NIC-to-NIC packet I/O in P2PNIC with DMA Read and Write.

the descriptor ring and packet buffer of the opposite NIC. For
the requirement, the driver of P2PNIC informs each NIC of the
physical addresses in its initialization. After the initialization,
the driver of P2PNIC does not process packet forwarding
because each NIC drives it.

B. Methods for NIC-to-NIC packet I/O

In P2PNIC, the packet transfer between NICs can be DMA
Read or Write, as shown in Figure 3. In the P2PNIC with
DMA Write (P2PNIC-Wr), the NIC that received a packet
issues DMA Write to transfer the packet to the device memory
on the opposite NIC. After the transfer, the NIC updates the
descriptor ring on the opposite NIC by DMA Write to report
the transferred packet. The opposite NIC sends the packet and
then reports the completion of sending through the descriptor
ring by DMA Write. The procedure is similar to the CPU-
driven architecture except that its direction is from NIC to
NIC. Besides, P2PNIC can also be achieved based on DMA
Read. In P2PNIC with DMA Read (P2PNIC-Rd), the NIC that
received a packet reports the packet’s arrival to the opposite
NIC at first. Upon receiving the report, the opposite NIC issues
DMA Read to retrieve the packet from the NIC. After the
completion of DMA, the opposite NIC sends the packet and
reports the completion of sending through the descriptor ring.

Because there is a possibility of packet corruption due to the
DMA failure in P2PNIC, the NICs compute a checksum for
each packet before and after the DMA. PCIe adopts packet-
based communication, and its packets are called Transaction
Layer Packets (TLPs). In PCIe packet transfer between CPU
and PCIe devices, TLP drop does not occur because the
required bandwidth is ensured between them. However, in
DMA between NICs, the required bandwidth is not always
ensured across the entire path between the devices. If data
congestion occurs at a component (e.g., PCIe switch) on the
communication path, the component may drop TLPs, even
though the retransmission mechanism is provided on the links
between the components. By using the checksum mechanism,
the NIC can detect if the packet is corrupted due to DMA
failure and drop it.

IV. IMPLEMENTATION

We implemented P2PNIC with Netronome Agilio LX
2x40GbE NICs [7] to show the feasibility and the performance
compared with the applications of CPU-driven architecture in
the 40 Gbps range. This NIC provides software programma-
bility as its firmware and has a network processing unit (NPU)
called NFP-6000 and two 40 Gbps Ethernet ports. We used
this NIC because it has the capacity to process high-volume
traffic inline and provides fine-grained programmability on
DMA over PCIe; both are required to prototype P2PNIC.

There are two possible ways to achieve P2PNIC, as men-
tioned in Section III-B: DMA Write and Read. We imple-
mented both of the methods, named P2PNIC-Wr and P2PNIC-
Rd, as separated firmware to demonstrate their feasibility and
performance. In addition, we prepared a modified version
firmware of P2PNIC named P2PNIC-Bn that uses CPU to
process the descriptor ring and main memory to transfer
packets. The purpose of this firmware is to observe the impact
on the performance by involving CPU and main memory com-
pared with P2PNIC-Wr and P2PNIC-Rd, without changing the
implementation as far as possible. For every P2PNIC-based
method, we implemented the IP routing feature, including
the longest prefix matching with the state-jump table [17],
while it can be removed by a build option depending on the
measurement condition.

To manage the NICs and inform them of the necessary
parameters at initialization, we also implemented a dedicated
driver in the user space of the Linux OS. The driver performs
the initialization for each NIC, which includes enabling the
PCIe bus mastering, gathering physical addresses of the de-
scriptor rings and DMA buffers of installed NICs, and inform-
ing each NIC of the physical addresses. After the initialization,
the driver does not process packet forwarding because each
NIC drives that. Although this driver is implemented in the
user space of the Linux OS, it can perform the same function
as a kernel-space driver by using the VFIO [18] mechanism.

The checksum calculation against the packet data to detect
DMA failure is a mandatory feature for P2PNIC implemen-
tation. However, implementing the checksum mechanism as a
part of the firmware increases the processing load in proportion
to the packet size. To minimize the impact of the checksum
calculation on the performance, we calculate the checksum
using only a representative four bytes for every configurable
number of bytes, which has to be smaller than the size into
which TLPs can be divided and dropped (64 bytes for DMA
Read and 128 bytes for Write in typical systems). For the
measurement we conduct in Section V, we use 64 as the
configurable number of bytes for both DMA Read and Write
to align the parameter with the worst case.

Moreover, to optimize the throughput of the implementa-
tions, we adopt the batching method to update descriptors. On
the other hand, the total latency to forward a packet increases
along with the batch size. To achieve a reasonable throughput–
latency balance, we adopt eight as the smallest batch size that
can achieve the 40 Gbps wire-rate by 128-byte packets.

Main
memory

40GbE

PC
Ie

 S
w

itc
h

CPU CPU Main
memory

NIC

NIC NIC

NIC

40GbE

Forwarder hostTester host

P2PNIC-Wr and P2PNIC-Rd

Main
memory

40GbE

PC
Ie

 S
w

itc
h

CPU CPU Main
memory

NIC

NIC NIC

NIC

40GbE

Forwarder hostTester host

P2PNIC-Bn and DPDK applications

Packet forwarding path

Fig. 4. Measurement setup for P2PNIC-Wr, P2PNIC-Rd, P2PNIC-Bn, and
DPDK applications.

V. EVALUATION

We evaluate the implementations of P2PNIC by measuring
its performance and comparing it with the DPDK applications
as examples of the CPU-driven packet forwarding architec-
ture. The DPDK applications we used for the evaluation are
TestPMD and L3FWD. TestPMD is for the performance test
of drivers in DPDK, and it forwards packets without any
processing on the packet data. On the other hand, L3FWD
forwards packets based on IP routing. As the key metrics for
the packet forwarding mechanism, we measured throughput
(§ V-A) and latency (§ V-B). In addition, we confirmed that
P2PNIC does not require any CPU processing and PCIe com-
munication between CPU and NIC during packet forwarding
by measuring their usage (§ V-C).

For the measurement setup, we used two hosts connected
with two 40 GbE links with direct attach cables, as shown in
Figure 4. We refer to a host to generate traffic as a tester
host and another host to forward packets by the P2PNIC
implementations or the DPDK applications as a forwarder
host. For P2PNIC-Wr and P2PNIC-Rd, the CPU and main
memory are not involved in the packet forwarding flow. The
NIC for receiving packets transfers packets directly to the
NIC for sending packets in the forwarder host by P2P DMA
through the PCIe switch. In contrast, for P2PNIC-Bn and the
DPDK applications, the CPU and main memory are involved
in every packet forwarding.

The forwarder host has an Intel Core i9-9820X 10 core CPU
and 32 GB DDR4 memory with an ASUS WS X299 SAGE
motherboard. This motherboard has PLX8747 PCIe switches,
and two Netronome Agilio LX 2x40GbE NICs were installed
on PCIe slots under the same PCIe switch. The tester host has
an Intel Core i7-9700K 8 core CPU, 32 GB DDR4 memory,
with an ASRock Z390 motherboard. For NICs of the tester
host, we used both Intel X710 and Mellanox ConnectX-4
NICs, depending on the measurement requirements.

For the configuration basis in this evaluation, all methods
were configured to maximize their throughput. The parameters
set in this basis are the batch size of NIC’s descriptor updating
(8) in P2PNIC-Wr, P2PNIC-Rd, and P2PNIC-Bn, and the
number of queues (4), the corresponding CPU cores (4),

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64 128 256 512 1024

T
h
ro
u
g
h
p
u
t
[G
b
p
s
]

Packet size [Byte]

Theoretical rate
P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn
TestPMD

Fig. 5. Throughput without IP rout-
ing. All methods achieve the wire-
rate above 1024-byte packet sizes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64 128 256 512 1024

T
h
ro
u
g
h
p
u
t
[G
b
p
s
]

Packet size [Byte]

Theoretical rate
P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn

L3FWD

Fig. 6. Throughput with IP routing.
All methods achieve the wire-rate
above 1024-byte packet sizes.

and the batch size of CPU’s processing (8) in P2PNIC-
Bn and DPDK applications. To observe the bare impact
of going through memory by comparing P2PNIC-Bn with
other P2PNIC methods, we made their implementation and
parameters (e.g., the batch size) as common as possible.

A. Throughput

Because throughput is one of the key metrics for the packet
processing mechanism, we evaluated the throughput of the
P2PNIC implementations and the DPDK applications with
and without IP routing. For the packet generation, we used
MoonGen [19], a DPDK-based software packet generator,
and a Mellanox ConnectX-4 NIC to send packets because
of its achievable rate, while we used an Intel X710 NIC to
receive packets. We observed the throughput for packets of
64, 128, 256, 512, 1024, 1280, and 1518 bytes according to
the hardware counter of the NIC for an average of 10 seconds,
excluding the 10 seconds before and after.

According to the results for the measurements shown in
Figure 5 and Figure 6, the throughput of P2PNIC-Wr and
P2PNIC-Rd exceeded TestPMD and P2PNIC-Bn. When the
packet size was 64 bytes, and IP routing was disabled,
the P2PNIC-Wr achieved 40.37 Mpps, which is 1.45 times
higher than that of TestPMD. For packet sizes above 512
bytes, all methods achieved the theoretical wire-rate, and this
trend did not change with IP routing. The reason for the
higher throughput of P2PNIC methods is that P2PNIC requires
either DMA Read or Write to forward a packet, while the
applications of the CPU-driven architecture require both. In
this case, the P2PNIC-Wr’s once issuing DMA Write showed
higher throughput than the TestPMD’s twice issuing of DMA
Read and Write. Whether DMA write or read is faster may
be different on other NIC because its performance depends
on the DMA implementation in NIC. In addition, although
the throughput gap between P2PNIC-Rd and P2PNIC-Bn
is slight, it indicates that transferring packets through main
memory has performance overhead compared with P2P DMA.
Moreover, the gap would increase when the throughput exceed
the bandwidth of the main memory.

B. Latency

To show that P2PNIC also has the advantage in latency
over the CPU-driven architecture, we evaluated unidirectional

0

0.5

1

0 5 10 15 20 25 30

P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn
TestPMD

0

0.5

1

0 5 10 15 20 25 30

P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn

L3FWD

0

0.5

1

0 5 10 15 20 25 30

P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn
TestPMD

0

0.5

1

0 5 10 15 20 25 30

P2PNIC-Wr
P2PNIC-Rd
P2PNIC-Bn
TestPMD

Unidirectional Latency [us]
C

D
F

(a)

(b)

(c)

(d)

Fig. 7. CDF of the unidirectional latency in following conditions: (a) 64
bytes packets with 1 Gbps background traffic without IP routing, (b) 64 bytes
packets with 1 Gbps background traffic with IP routing, (c) 1518 bytes packets
with 1 Gbps background traffic without IP routing, and (d) 1518 bytes packets
with 40 Gbps background traffic without IP routing.

latency for the P2PNIC implementations and the DPDK ap-
plications. We used Intel X710 NICs for both sending and
receiving packets and MoonGen to measure the latency with
the hardware timestamp feature. To observe the characteristics
of latency with various conditions, we changed the traffic pat-
tern for the packet size and traffic volume. However, because
the XL710 NIC does not support the timestamp mechanism
with high traffic volume, only 1 Kpps traffic was counted by
the timestamp mechanism, and other packets were forwarded
but not counted. We observed the latency in the aggregation
of 30 seconds; thus, around 30,000 samples were counted for
each measurement.

In overall measurements, P2PNIC-Wr and P2PNIC-Rd had
lower latency than the methods of CPU-driven architecture,
including the DPDK applications. For the latency for 64-byte
packets without IP routing shown in part (a) of Figure 7,
P2PNIC-Wr and P2PNIC-Rd had 36% and 32% lower latency
than that of TestPMD, respectively.

We see the three major factors for the increase of latency
through the measurements: (1) processing of the protocol stack
(i.e., IP routing), (2) packet size, and (3) traffic load. Part (b) of
Figure 7 shows the latency for 64-byte packets when IP routing
is enabled. There is an increase in latency of 18%, 16%, and
15% compared with the result without IP routing shown in part
(a) of Figure 7 at the 90th percentile for P2PNIC-Wr, P2PNIC-
Rd, and P2PNIC-Bn, respectively. For the DPDK applications,
although a simple comparison between TestPMD and L3FWD

TABLE I
RESOURCE USAGE OF EACH METHOD

FOR FORWARDING 1518-BYTE PACKETS IN 40 GBPS.

CPU usage PCIe throughput
P2PNIC-Wr 0% per CPU core 0 MB/s
P2PNIC-Rd 0% per CPU core 0 MB/s
P2PNIC-Bn 100% per CPU core 9,785 MB/s
TestPMD 100% per CPU core 9,885 MB/s

is not accurate because their implementations totally differ,
the results of L3FWD showed a 12% increase in latency over
TestPMD at the 90th percentile.

In addition, the latency increases with the packet size for all
methods. Part (c) of Figure 7 shows the latency for forwarding
1518-byte packets with 1 Gbps background traffic, and we can
observe the latency increase with the packet size by comparing
it with part (a) of Figure 7: the latency increases were 41%,
42%, 30%, and 27% at the 90th percentile for P2PNIC-Wr,
P2PNIC-Rd, P2PNIC-Bn, and TestPMD, respectively.

Moreover, the latency also increases with background traf-
fic. By comparing (d), which shows the latency for 1518-byte
packets with 40 Gbps background traffic, with (c) of Figure 7,
the increase rate of each method were 27%, 35%, 84%,
and 38% at the 90th percentile for P2PNIC-Wr, P2PNIC-Rd,
P2PNIC-Bn, and TestPMD, respectively. The higher increase
rate of P2PNIC-Bn is likely because of its larger batch size
than TestPMD for updating the descriptor rings. A larger batch
size increases latency because of waiting for packets up to
the size. P2PNIC-Wr and P2PNIC-Rd also used the same
batch size, but they process batched packets in parallel by the
NPU while P2PNIC-Bn processes them sequentially by the
CPU. Thus, P2PNIC-Wr and P2PNIC-Rd are more tolerant to
background traffic from the viewpoint of latency.

C. CPU usage and PCIe throughput

P2PNIC achieves fast packet forwarding on a general-
purpose server without any processing on CPU for packet
forwarding. We confirm the characteristic by measuring the
actual usage of CPU and PCIe throughput in 40 Gbps traffic
load by 1518-byte packets. The PCIe throughput means the
amount of data that passed through the CPU for the data
transfer between main memory and NICs. Therefore, the value
would be near zero for P2PNIC-Wr and P2PNIC-Rd because
their communication is completed under the PCIe switch.

From the result shown in Table I, we confirmed that
P2PNIC-Wr and P2PNIC-Rd do not require any processing on
the CPU for packet forwarding. Besides, because the commu-
nication of these methods is completed under the PCIe switch,
the PCIe throughput did not increase during the measurement.
On the other hand, because P2PNIC-Bn and TestPMD adopt
busy waiting to process the packet received from the NIC,
both methods consume all the capacity of allocated CPUs. In
addition, we observe reasonable PCIe throughput for P2PNIC-
Bn and TestPMD, which is nearly equal to 80 Gbps, that is,
the sum of receiving and sending at 40 Gbps.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel packet forward-
ing architecture called P2PNIC, in which NICs drive packet
forwarding, to overcome the potential limits of the CPU-
driven architecture. We have implemented P2PNIC, and its
evaluation shows that P2PNIC-Wr, which is one of the variants
of P2PNIC, achieves 1.45 times higher throughput and 36%
lower latency compared with TestPMD, a reference application
of DPDK. P2PNIC architecture contributes to the enhancement
of software middleboxes, and it could be an effective technol-
ogy to accelerate network virtualization and cloud services.
For future work, we aim to improve the scalability of P2PNIC,
which would include the throughput improvement by multiple
NICs and corresponding evaluation.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, 2015.

[2] Y. Ohara, Y. Yamagishi, S. Sakai, A. D. Banik, and S. Miyakawa,
“Revealing the Necessary Conditions to Achieve 80Gbps High-Speed
PC Router,” in Proc. Asia. Int. Eng. Conf. (AINTEC), 2015, pp. 25–31.

[3] Intel DPDK Validation team, “DPDK Intel NIC Performance Report
Release 20.08,” 2020. [Online]. Available: https://fast.dpdk.org/doc/perf/
DPDK 20 08 Intel NIC performance report.pdf

[4] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
2015, pp. 5–16.

[5] DPDK Project, “DPDK: Home,” 2020. [Online]. Available:
https://www.dpdk.org

[6] J. D. Brouer and T. Høiland-Jørgensen, “XDP: challenges and future
work,” in Proc. Linux Plumbers Conf., 2018.

[7] Netronome, “Agilio LX SmartNICs,” 2020. [Online]. Available:
https://www.netronome.com/products/agilio-lx/

[8] J. Aweya, Architectures With Bus-Based Switch Fabrics: Case
Study—Cisco Catalyst 6000 Series Switches. Wiley-IEEE Press, 2018.

[9] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: exploiting
parallelism to scale software routers,” in Proc. ACM Symp. Operating
Systems Principles (SOSP), 2009, pp. 15–28.

[10] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in Proc.
USENIX Annu. Tech. Conf. (ATC), 2012, pp. 101–112.

[11] J. L. Hennessy and D. A. Patterson, “A New
Golden Age for Computer Architecture,” Feb 2019. [On-
line]. Available: https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext

[12] J. Zhang, D. Donofrio, J. Shalf, M. T. Kandemir, and M. Jung, “Nvmmu:
A non-volatile memory management unit for heterogeneous gpu-ssd
architectures,” in Proc. Int. Conf. Parallel Architecture Compilation
Tech. (PACT). IEEE, 2015, pp. 13–24.

[13] S. Bergman, T. Brokhman, T. Cohen, and M. Silberstein, “SPIN:
Seamless operating system integration of peer-to-peer DMA between
SSDs and GPUs,” ACM Trans. Comput. Syst., vol. 36, no. 2, pp. 1–26,
2019.

[14] Broadcom, “PEX88000 Series Managed PCI Express 4.0 Switches,”
2020. [Online]. Available: https://docs.broadcom.com/doc/BC-0484EN

[15] AMD, “AMD EPYC 7002 Series Processors,” 2020. [Online]. Available:
https://www.amd.com/en/processors/epyc-7002-series

[16] S. Pirelli and G. Candea, “A Simpler and Faster NIC Driver Model
for Network Functions,” in Proc. USENIX Symp. Oper. Syst. Des.
Implement. (OSDI), 2020, pp. 225–241.

[17] Y. Li, D. Zhang, A. X. Liu, and J. Zheng, “GAMT: a fast and scalable
IP lookup engine for GPU-based software routers,” in Proc. ACM/IEEE
Symp. Archit. Netw. Commun. Syst. (ANCS), 2013, pp. 1–12.

[18] Linux Kernel, “VFIO - Virtual Function I/O,” 2020. [Online]. Available:
https://www.kernel.org/doc/Documentation/vfio.txt

[19] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. Internet
Measurement Conf. (IMC), 2015, pp. 275–287.

