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Abstract—Longest prefix matching (LPM) is a fundamental
process in IP routing used not only in traditional hardware
routers but also in modern software middleboxes such as the
applications of Network Function Virtualization. However, the
performance of recent LPM methods in software routers is
insufficient for high-speed packet processing such as two or
more 100 Gbps throughput. To improve the performance of
LPM, we propose Spider, a new LPM method that achieves
a fully parallelized LPM procedure using single instruction,
multiple data (SIMD) instructions in a CPU. The evaluation
shows that the proposed method has 1.8–1.9 times faster LPM
performance compared with the state-of-the-art methods in this
study area. We describe the Spider’s lookup procedure fully
parallelized by SIMD instructions and the design of the routing
table effectively processed by the procedure. We also report the
following three evaluations: (1) how parallelism by the SIMD
instructions contributes to performance; (2) the scalability of
Spider with the number of CPU cores; and (3) the performance
comparison with the previous methods in terms of randomly
generated and real-trace traffic patterns.

Index Terms—IP Routing, LPM, SIMD

I. INTRODUCTION

Longest prefix matching (LPM) is a fundamental function of
IP routing in both software middleboxes and hardware routers.
Modern routers need to process LPM extremely fast because
of the significant increase of network interface speed. Many
hardware routers used in current commercial networks process
the LPM by ternary content addressable memory to achieve
high LPM performance. On the other hand, the demand for
high-speed packet processing in software middleboxes is in-
creasing because software-based approaches enable developers
to make further advanced packet processing software. For
example, the network function virtualization [1], [2], software
routers for backbone networks [3], and the software-defined
wide-area network [4] mostly require software-based LPM
implementation.

However, the performance of recent LPM methods in soft-
ware routers is insufficient for high-speed packet processing
such as two or more 100 Gbps throughput. A recent approach
to improve the performance of LPM is to leverage CPU cache
to minimize the access speed to the routing table [5]–[7]. To
keep the data cache hot, these methods fit their routing tables
in the CPU caches by the optimization of the data structure.
Another approach is to leverage parallelism with accelerators
such as GPUs to improve the throughput of LPM [8]–[10].

These methods exploit the parallelism of GPUs powered by
the abundant memory bandwidth and conceal the data transfer
latency between the CPU and the GPUs by overlapping data
transfer and processing.

To improve the performance of LPM while exploiting the
low latency of the CPU, we propose a fully parallelized
LPM procedure using single instruction, multiple data (SIMD)
instructions. We have applied techniques to parallelize LPM,
which has been achieved in GPUs in previous work, to the
processing in the CPU. Our method provides an 8-way parallel
LPM procedure by the CPU using the SIMD instructions. In
addition, we have optimized the procedure by combining the
two iterations into a single loop to conceal the latency of
memory access, which results in 16-way lookups per iteration.
The proposed method achieves a 1.8–1.9 times faster lookup
rate of LPM processing, compared with the state-of-the-art
methods for the CPU, with random traffic patterns and routes
of the border gateway protocol (BGP) in two real ISPs. The
contributions of this paper are as follows.

• We have applied techniques to parallelize LPM in GPUs
to the processing in the CPU using SIMD instructions.

• We have achieved an 80% or higher lookup rate im-
provement compared with the state-of-the-art methods for
CPU.

II. RELATED WORK

Approaches for fast LPM in software can be categorized as
leveraging CPU cache and leveraging accelerators. This sec-
tion describes their characteristics and resulting performances.

Leveraging CPU cache for fast LPM in software is a recent
major approach [5]–[7]. In this approach, the methods exploit
the low latency of access speed to the CPU cache by keeping
the entire routing table on the CPU cache using dedicated
data structures. The characteristics of each data structure differ
greatly depending on the methods. For example, Poptrie [5]
uses a variant of a multiway trie that can omit unnecessary
child nodes in the memory area. The key idea of Poptrie is to
use the popcnt instruction to count the number of two types
of child nodes from a single bit vector, to omit either type
of child nodes from the memory area without performance
drawback. As a result, Poptrie has achieved 240.52 million
lookups per second (Mlps) with a random traffic pattern and
a BGP full route as of 2015. DXR [6] also takes a similar



approach to Poptrie, which has achieved 179.92 Mlps in the
evaluation of Poptrie’s paper. The rate of lookup indicates
the potential capacity to process the same rate of packet
processing, whose rate is described in the form of packets per
second (pps) or bits per second (bps). Thus, the performance
of Poptrie’s 240.52 Mlps indicates the potential capacity to
process 240.52 Mpps, which is over the theoretical upper limit
of the packet processing rate of 100 Gbps Ethernet.

Another approach is to exploit accelerators such as GPUs to
increase lookup throughput by executing LPM in parallel [8]–
[10]. To utilize the parallelism capacity of GPUs, the methods
tend to use a table, which is called a state-jump table,
converted from common data structures representing a routing
table such as multiway trie. In the state-jump table, each
element of the original trie node is encoded into an integer
according to several rules. The reason why the methods use
the state-jump table are (1) to avoid the performance drawback
caused by conditional branching by encoding the condition
into the location of the element, and (2) to arrange the data in
a form that GPUs can look up efficiently. As a result of the
characteristics of GPUs and the corresponding optimizations,
GAMT [8] has achieved over 1,000 Mlps when 224 destination
IP addresses are prepared in advance of the execution, while
the lookup rate declines to 50 Mlps when the prepared number
of destination IP addresses is less than 212.

On the other hand, both approaches have disadvantages.
For the methods that exploit low latency of the CPU cache,
more improvement to the approach would be brought by the
increase of CPU clock rate although it has stagneted [11],
because the part of accessing data of these methods is already
optimized. For the methods that exploit accelerators, the
dedicated hardware increases the cost for addressing power
consumption [12], and the latency to complete each lookup.

III. PROPOSED METHOD

For faster LPM in software while overcoming the draw-
backs, we propose a novel LPM method exploiting SIMD
instructions, called Spider. The main idea of Spider is to
apply techniques to parallelize LPM, which has been achieved
in GPUs in previous work, to the processing in the CPU. We
adopt a state-jump table [8] as the data structure to represent a
routing table, and optimize it to be effectively processed with
Spider’s LPM procedure that consists of SIMD instructions.
The gather instruction is the key part to achieve our method,
which loads multiple data located in split areas by a single
instruction. The recently implemented gather instruction can
be used to implement the table lookup procedure, which is the
last piece to fully parallelize LPM by SIMD instructions. By
using these techniques, we demonstrate that the parallelization
of LPM by SIMD instructions produces a higher lookup rate.

In real packet processing softwares, maximizing the perfor-
mance of parallelized LPM needs to process multiple packets
at once by waiting arrival of these packets. Consequently,
the waiting time increases the latency of each packet. How-
ever, fortunately, modern packet processing software uses
the technique called packet batching [3], [10], [13], [14],
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Fig. 1. Design of Spider’s data structure: an example of a routing table in
which 192.168.0.0/16, 192.168.64.0/24, and 10.64.128.192/28 are installed,
and 192.168.64.1 and 10.64.128.200 are processed.

which means processing multiple packets per function. These
softwares can be easily extended to process the packets in
parallel without any drawback because packet batching and
parallelization are common in handling multiple packets at
once. Therefore, parallelizing LPM is reasonable in the packet
processing softwares with packet batching.

A. Routing table design of Spider

We adopt the state-jump table as the data structure of Spider,
which was originally proposed for LPM on GPUs. The SIMD
instructions require that the data structure must be packed in
one area and byte-aligned on the memory. Because of the
requirements, the SIMD instructions cannot handle the data
structures previously proposed for processing LPM in CPU.
To satisfy the requirement, we adopt the fixed-length stride
of the state-jump table while the original method adopts the
variable-length stride.

The state-jump table of Spider, which is shown in Figure 1,
is constructed by arranging each node in the original multiway
trie into a two-dimensional array. A multiway trie is widely
used as a data structure for routing tables. In both the multiway
trie and the state-jump table of Spider, each node contains
256 elements and the elements correspond to a possible value
of an 8-bit part of the IP address. For the state-jump table,
each element contains two types of 16-bit length information:
next hop (NH) and next node (NN). NH represents the index
number of next hop information managed separately and NN
represents the location of the child node, which is the number
of the row. The detailed procedure of conversion is as follows:
(1) convert each node of the multiway trie into a single array of
the 256 elements; (2) fill the elements by converting pointers
to children in the multiway trie to the number of the row where
the target node will be located; and (3) arrange the rows into
a two-dimensional array together with the End-of-Lookup and
the Direct Pointing Table.



In the situation shown in Figure 1, there are three routes:
192.168.0.0/16, 192.168.64.0/24, and 10.64.128.192/28. When
the destination IP address is 192.168.64.1, the lookup pro-
cedure is as follows. (1) The lookup procedure fetches the
element corresponding to the 1st and 2nd octets of the IP
address from the Direct Pointing Table, which is a well-known
optimization described in Section III-C. In this example,
because the element contains an NN for the node representing
192.168.0.0/16, the lookup procedure will use the node to
search longer routes. In addition, because the element also
contains an NH for 192.168.0.0/16, the lookup procedure saves
the NH as the result. (2) The lookup procedure fetches the
element corresponding to the 3rd octet of the IP address from
the node representing 192.168.0.0/16. At this time, because the
64th element of the node for 192.168.0.0/16 does not contain
the NN, the lookup procedure detects the completion of the
lookup. On the other hand, because the 64th element contains
an NH for 192.168.64.0/24, the lookup procedure overwrites
the result with the NH. The NH will be the longest matched
result because the following procedure will not find a new
result in this case.

Because of the mechanism of SIMD, Spider need to con-
tinue executing the same instructions until lookup of all
destination IP addresses complete. To address the requirement,
Spider uses End-of-Lookup. A lookup for an IP address that
ended earlier than others continues to go around End-of-
Lookup because all elements in End-of-Lookup contain zero
as the value of NN and NH. Therefore, in this example, if
lookups for any other IP addresses have not ended, the lookup
procedure will fetch the 1st element of the End-of-Lookup
node according to the 4th octet of the IP address.

B. Parallelization by SIMD instructions

Spider looks up multiple destination IP addresses simul-
taneously because the entire algorithm consists of SIMD
instructions. In the lookup phase, destination IP addresses
are divided into 8-bit parts, and Spider traces the elements
on the state-jump table according to each 8-bit part of the
destination IP addresses in parallel. We assume AVX2 by Intel
as the primary instruction set to implement Spider. However,
other instruction sets can also be used because the design of
Spider is independent of the specific instruction set. For the
implementation by AVX2, Spider looks up eight destination IP
addresses in parallel, because AVX2 can address up to 256-bit
data.

Algorithm 1 describes the lookup procedure of Spider at the
instruction level. The subscripts of each operation represent
the data type of SIMD instructions. The basic procedure is
as follows: (1) extract the first 16-bit part for direct pointing
or next 8-bit part for normal iteration from the destination
IP addresses by shuffle instruction; (2) add the extracted
parts to the value of NN ⇥ 2stride, where the stride is fixed
to 8 in Spider, to calculate the indexes of the next elements;
(3) fetch the next elements based on the indexes by gather
instruction; and (4) extract NH and NN from the elements by

Algorithm 1 Lookup procedure of Spider
Input: DstArray
Output: ResArray

1: load256 (dst ,DstArray);
2: /* Direct pointing for first 16-bit parts of IPs */
3: idx = shu✏e8 (dst ,maskd16 );
4: idx = add32 (idx , 256 ); // row[1] + idx
5: val = gather32 (fib, idx );
6: nh = shu✏e8 (val ,masknh);
7: res = nh;
8: nn = shu✏e8 (val ,masknn);
9: while not all NNs are 0 do

10: /* Iterative lookup for each 8-bit parts of IPs */
11: idx = shu✏e8 (dst ,maskd8 );
12: idx = add32 (idx ,nn); // row[NN] + idx
13: val = gather32 (fib, idx );
14: nh = shu✏e8 (val ,masknh);
15: maskbl = cmpeq32 (nh, 0 );
16: res = blend32 (maskbl , res,nh);
17: nn = shu✏e8 (val ,masknn);
18: end while
19: store256 (ResArray , res);
20: return;

shuffle instruction. The lookup procedure ends when all
NNs indicate zero.

C. Optimization

In addition to the basic design of the data structure and
procedure, we applied the following well-known optimization
techniques to Spider, to further enhance the performance: (1)
route aggregation; (2) direct pointing; and (3) loop fusion. For
a preliminary optimization, we applied route aggregation [15]
to the multiway trie to reduce the size of the resulting state-
jump table. Route aggregation is a common technique to
combine a plurality of routes that have the same next hop into
one route. Route aggregation reduces the size of a routing
table, and is applicable to other LPM methods. In addition,
we used a technique to reduce the number of traversals of
the routing table, called direct pointing [5]. In direct pointing,
an array corresponding to the part from the beginning of the
IP address is prepared in advance, and the lookup for the
length is covered with a single access to the array. In Spider,
the array is prepared for 16-bit length and is arranged as a
part of the state-jump table from the 1st row to the 256th
row. In the lookup algorithm of Spider, we combined two
iterations of a lookup into a single loop to conceal the latency
of memory access of load, store, and gather instructions. This
well-known optimization is called loop fusion [16]. As a result,
the maximum number of destination IP addresses processed in
a single iteration becomes 16-way in Spider.

IV. EVALUATION

We compare the performance of Spider with other methods,
i.e., DXR and Poptrie. Parallelizing LPM by exploiting SIMD
instructions would provide a higher lookup rate than other
methods in spite of two major drawbacks: the larger memory
footprint and the reduction of the CPU clock rate. As shown
in Table I, the routing table of Spider has a larger memory



TABLE I
MEMORY FOOTPRINT OF ROUTING TABLES.

ISP-A ISP-B
Method Memory size [MiB] Memory size [MiB]
Spider 9.32 11.61
Poptrie18 1.25 1.35
Poptrie16 1.63 2.03
D18R 1.29 1.40
D16R 0.50 0.61

footprint than DXR and Poptrie because Spider uses a fixed-
length stride in the state-jump table. By contrast, other meth-
ods tend to minimize the memory footprint by the optimization
of the data structure including variable-length stride. As the
result, it is expected that the entire routing table of Spider
would not fit in the L1 cache. In addition, according to the
specification [17], Intel’s CPU used in this evaluation reduces
its clock rate by 19% when processing AVX2 instructions to
reduce the power consumption.

We used the implementation of DXR and Poptrie published
as a module of Click modular router [18], [19] and a stand-
alone library [20], respectively, with modification to measure
the performance. In this evaluation, we applied route aggrega-
tion and direct pointing for all methods. Both DXR and Poptrie
vary regarding the length of direct pointing, whose length is
represented as the name, such as Poptrie18 and D18R, in a
form aligned with previous work [5], [6]. The equipment used
for experiments consists of an Intel(R) Xeon(R) Gold 6130
(3.7 GHz, 22 MiB cache) and 48 GB DDR4-2666 memory.
We conducted measurements of all evaluations 10 times on the
Ubuntu 18.04.3 LTS server (x86-64) on the equipment. The
sizes of L1, L2, and L3 cache are 1 MiB, 16 MiB, and 22
MiB, respectively.

A. Dataset and traffic patterns

We evaluate the performance of the LPM methods with the
current BGP route of the Internet called the BGP full route,
which is suitable for this experiment because IP routing based
on the BGP full route is the highest load situation that current
routers face in real environments. As the current BGP routes
of the Internet, we used two BGP full routes of real ISPs:
ISP-A, and ISP-B. Both BGP full routes were captured on
December 10, 2019.

We consider the random and real traffic patterns for the
evaluation in this paper. For the random traffic pattern, we
measured the time of looking up 232 random destination IP
addresses with just-in-time generation of the pattern aligned
with Poptrie’s paper. We used the linear congruential method
to generate the random traffic pattern. For the real traffic
pattern, we measured the time of looking up destination IP
addresses from real Internet traffic captured on April 10,
2019, on the samplepoint-F of the WIDE backbone, which
is published as the MAWI dataset [21]. For this pattern, the
228 IP addresses are arranged in a 1-Gbyte array in advance as
the maximum number that can be prepared without affecting
the lookup performance.
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B. Effect of parallelization in Spider

We evaluated how parallelism by the SIMD instructions
contributes to performance, given that parallelizing LPM is
our main contribution. The measurement was conducted with
the random traffic pattern and the BGP full route of ISP-A.

According to the result shown in Figure 2, we confirmed the
throughput of LPM scales along with the parallelism provided
by the SIMD instructins. When processing the same number
of IP addresses, the number of iterations decreases according
to the degree of parallelism in Spider. The linear scaling in
the result indicates that the reduction of the number of lookup
iterations contributes to the performance. When the degree of
parallelism is 16-way, Spider reaches 516 Mlps of lookup rate,
which is 6.9 times faster than the case when the parallelism is
1-way, 1.8 times faster than Poptrie18, and 1.9 times faster than
D18R. The lookup rates of Spider and other methods become
almost equal when Spider is between 7-way and 8-way.

When the parallelism of Spider is less than 7-way, the
lookup rate of Spider falls below the others. A major factor is
the cache hit rate in the CPU, which decreases along with the
size of memory footprint. For Spider, the memory footprint
is larger than 1 MiB of L1 data cache and other methods
as shown in Table I. The other major factor of Spider’s
performance drawback at lower parallelism is the reduction
of clock rate. In summary, for Spider, the reduction of the
CPU cache hit ratio due to the size of the memory footprint
and the reduction of the clock rate lead to lower performance
at less than 7-way.

C. Scalability in a multicore environment

The scalability according to the number of CPU cores is
worth evaluation because recent packet forwarding mecha-
nisms are generally designed and implemented to scale up with
the number of CPU cores [3], [14]. Thus, we evaluated how
the lookup rate changes depending on the number of cores. In
this experiment, all CPU cores share the routing table. From
Table I, all methods fit the memory footprint of their routing
table at least in the L3 cache. Therefore, the performance of
all methods should scale with the number of cores until the
bandwidth of the L3 cache runs out.

Figure 3 shows the result of the experiment. The lookup
rates of all of the methods including Poptrie18, D18R, and



0
100
200
300
400
500
600

ISP-A
-RAN

D

ISP-B
-RAN

D

ISP-A
-REA

L
ISP-B

-REA
LLo

ok
up

ra
te
[M
lp
s]

D16R
Poptrie16

D18R

Poptrie18
Spider-16way
Spider-8way

Spider-1way

Fig. 4. Lookup rate comparison with other methods.

Spider scale up to the equipment limitation of 16 cores.
Spider achieves 6,595 Mlps, Poptrie18 achieves 3,205 Mlps,
and D18R achieves 3,061 Mlps at 16 cores. The ratio of
lookup rate differences between Spider and other methods
remains almost unchanged as the number of cores increases.
The lookup rate of Spider scales up to 12.8 times faster from
1-core to 16-core, and the lookup rate is sufficient for the
throughput of two or more 100 Gbps link speed.

D. Comparison of lookup rate with other methods

To confirm the performance advantage of Spider, we com-
pare the lookup rate of Spider with Poptrie18, Poptrie16, D18R,
and D16R with the random and real-trace traffic patterns and
the BGP full routes of two real ISPs. For random lookup,
we added 8-way and 1-way variants of Spider in addition to
the original 16-way version to show the effect of parallelism
provided by the SIMD instructions, while we measured only
the 16-way version of Spider for the real-trace lookup for im-
plementation restriction caused by the measurement condition.

Figure 4 shows the result of the random and real-trace
traffic patterns. Through all experiments, Spider outperforms
other methods for both the ISP-A and ISP-B BGP full routes.
The results show that the parallelization by SIMD instructions
leads to the performance improvement, which can compensate
for the longer time required to load data in the CPU due to the
larger memory footprint and the reduction of the clock rate. In
comparison with Poptrie18, which is the next highest rate of
Spider, Spider is 1.8 times faster in random lookup with the
BGP full route of ISP-A and 1.9 times faster with ISP-B. In
terms of real-trace lookup, Spider is 2.42 times faster with the
BGP full routes of ISP-A and 2.65 times faster with ISP-B.

V. CONCLUSION

In this paper, we have proposed Spider, which achieves the
fully parallelized procedure of LPM by SIMD instructions
to improve the performance of LPM in software. We have
applied the techniques to parallelize LPM in GPUs to the
processing in CPU. The key to achieving the fully parallelized
procedure of LPM is to utilize the gather instruction, which
enables the CPU to execute table lookup in a fully parallelized
manner by using SIMD instructions. As a result, Spider
demonstrated a dramatic improvement in LPM performance
compared with the previous methods. The evaluation shows

that the lookup rate improved by 80% or more in random
lookup with the BGP full routes of real ISPs. The Spider’s
performance improvement of LPM takes various software-
based network applications to the next step in which two or
more 100 Gbps throughput are required as the mainstream of
communication speed.
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