
Toward Real-time Packet Classification for

Preventing Malicious Traffic by Machine Learning

Toki Suga

University of Tokyo

ga su @hongo.wide.ad.jp

Kazuya Okada

University of Tokyo

okada@ecc.u-tokyo.ac.jp

Hiroshi Esaki

University of Tokyo

hiroshi@wide.ad.jp

Abstract—Both enterprise and carrier networks face various
cyber threats in daily operation. Although numerous security
researchers have proposed various attack detection methods to
defend against cyber-attacks, attackers have quickly responded
with dramatic changes to their attack campaigns. However,
ML-based methods tend to take long processing time to detect
attacks compared with signature-based ones. Ideally, malicious
packets must be intercepted on network path before they arrive
at target hosts to avoid significant damage on users and network
resources by incidents and to reduce security operation costs.
To achieve ML-based attack detections in real-time, it will be
necessary to resolve the problem of processing time increased
by ML prediction. In this paper, we firstly propose a packet
forwarding architecture with ML classification modules. We
implemented this architecture on a prototype system with DPDK
and common ML libraries and frameworks, and conducted
preliminary experiments to reveal the system bottlenecks. Based
on the results, we then proposed the DNS packet processing
model that realizes ML-based attack detection in real-time by
completing the classification during DNS name resolution. Our
evaluation results show that almost all malicious queries are
filtered before the initial packets arrive at the resolved IP address.

Index Terms—Machine Learning, Packet Classification

I. INTRODUCTION

Cyber attacks become big threats to the Internet

infrastructure and its users. Although numerous security

researchers have proposed various attack detection methods

to defend against cyber-attacks, attackers have quickly

responded with dramatic changes to their attack campaigns.

Additionally, the scale of such campaigns has now spread

all over the world. Furthermore, attack methods have become

increasingly complex and can rarely be detected by pre-shared

attack signatures. Accordingly, many of the current detection

mechanisms deployed against such attacks now utilize

machine learning (ML) features such as neural networks to

detect mixed and complicated malicious activities [1], [2], [3].

In principle, attack detections on the network side

are more beneficial for preventing security incidents,

because in-network detection systems can effectively intercept

malicious attacks before they arrive at the target hosts and

thus prevent the spread of malicious activities to internal

and external networks. However, to achieve the network-side

detections, security devices must inspect every packet arriving

in a network in real-time before they are forwarded. Indeed,

current security devices such as Next-Generation Firewall

(NGFW) and IDS can inspect network traffic with signatures

at wire speeds of up to 100 Gbps. In contrast, when compared

with signature-based methods, ML-based methods generally

take much more time (the results in this paper show actual time

values). For achieving link speed inspection, acceptable packet

processing time is very short. Specifically, to achieve 10 Gbps

throughput, 64 bytes must be handled at a total processing

time of less than 50 ns.

While real-time attack detections are required for preventing

security incidents, many studies that leverage ML-based

methods have not yet considered the processing time required

to detect attacks. If a detection mechanism takes an excessive

amount of time to detect an attack, delays will result in

the responses to the incident, or incident prevention failures

will occur, potentially causing serious damage on the victim

side, such as information leakage. Security specialists have

been improving their detection accuracy by combining of new

classification algorithms and new features, but this approach

requires more processing time for each packet [4], [5].

To achieve ML-based attack detections in real-time, it will

be necessary to resolve the following two problems. The first

is the large processing time required for ML predictions.

The second is finding ways to use of multiple algorithms

in parallel to detect various attacks. In this paper, we firstly

propose a packet forwarding architecture that rapidly applies

learning results for packet classification. In our architecture,

the entire process is split into five parts to clarify the bottleneck

process. We implemented this architecture on a prototype

system and evaluated it during a packet processing experiment.

The results, which showed the baseline performance of the

architecture, also showed that the classifier part is more than

20 times more time-consuming than the other parts, making

it the most laborious process in the system. Based on the

results, we then focused on individual protocol behaviors and

real traffic patterns, and proposed the DNS packet processing

model that realizes ML-based attack detection in real-time by

completing the classification during DNS name resolution. Our

implementation based on the prototype system filtered almost

all malicious queries before the initial TCP traffic arrives at

the resolved IP address in our evaluation.

II. RELATED WORK

On the Internet infrastructure, various protocols are abused

to conduct cyber attacks. For instance, DNS has been used

to detect malicious activities such as domain generation



NIC

Classifier

TX

Parser

Null
RX DPDK

Classification module(s)

Hardware
Kernel space
User space

Forwarding process

Feature
Extractor

file:///home/ga-su-/Downloads/implementation_en.svg

1 of 1 2018/11/30 14:53

Fig. 1. System architecture of real-time packet classification by ML

algorithm (DGA) [6], DNS tunneling [7] and fast-flux [8].

In case of DGA detection, many studies leverage ML-based

methods, but these methods have major problems when

attempting to process packets in real-time. For example,

Luo et al. [4] developed a process for detecting DGA-based

malwares called DGASensor, which performs such detections

effectively using a random forest algorithm, and which can

process more than 7,000 queries in one second (143 µs

for each packet). Meanwhile, deep neural networks (DNNs)

were adopted for automatic feature extraction from real DNS

traffic [5]. However, their convolutional NN (CNN) predictions

take 50 - 70 ms per domain.

To achieve ML-based attack detections on the network side,

it is necessary to leverage the current methods that improve

packet processing performance. For instance, Lagopus switch

and router [9] is a high-performance software OpenFlow 1.3

switch and router, which performs 10.1 MPPS (5.66 Gbps)

with short packet of 64 bytes. The Lagopus adopts pipeline

structure and CPU affinity methods, which technique can be

applied to our system.

III. DESIGN AND IMPLEMENTATION

A. Architecture

In this section, we describe the design and system

architecture of our real-time packet classification process that

uses ML-based methods, which is shown in Figure 1. In our

research, we split the entire packet process into five processing

parts, Receiver (RX), Parser, Feature Extractor, Classifier,

and Transmitter (TX). The Parser part extracts values from

packet data such as src/dst IP address, src/dst port number, or

application-specific values. The Feature Extractor part converts

the values into feature vectors. The Classifier part classifies a

packet as either legitimate or malicious using those feature

vectors. If a packet is classified as legitimate, the packet will

be forwarded to the TX part. However, if a packet is classified

as malicious, the packet will be discarded in the system.

The classification system needs a sufficient amount of

flexibility to replace and add/delete classification modules,

because no single detector can prevent all malicious attacks.

Hence, multiple detectors are needed as classification modules

to detect and prevent various attacks. Additionally, since new

detectors are constantly being produced, it must be easy to

replace old detectors or to add others. For this reason, we

did adopt software-based implementation which can leverage

flexibility to classification modules as described above, even

though hardware implementations such as those based on

FPGA [10] operates faster than software. We implemented

our system to reveal its basic performance characteristics and

analyze the resulting bottlenecks. More specifically, We used

the Intel DPDK [11] library for RX and TX in order to

bypass the kernel stack overhead for forwarding. We also

used LIBSVM [12] library and Tensorflow [13] framework

to implement different classification modules. The Parser and

the Feature Extractor parts were implemented from scratch.

B. Preliminary experiment

We conducted two types of preliminary performance

measurements. These measurements were conducted to reveal

the baseline performance levels of our system and to clarify

the bottlenecks. The following paragraphs describe the details

of the evaluation setup, including the classification modules,

experimental procedures, and results.

Classification modules: To evaluate system performance

levels, we implemented two classification modules based on

LIBSVM and Tensorflow, which detect malicious DNS queries

generated by DGAs. This is just an example and our detection

targets will not be restricted to DGAs. As the detection

algorithm, we use previously proposed simple algorithms [1],

[2]. We chose the nu-SVC and the linear function as a type and

an kernel function of SVM, respectively. The neural network

model that we chose is based on a softmax regression and

achieves about 91 % accuracy at the MNIST dataset. We did

not retrain the both models in the experiments because training

processes cannot be finished during packets processing.

For the dataset, we created a domain name list with

legitimate or malicious labels assigned based on a publicly

available dataset [14], [15]. More specifically, 55,000

legitimate domain names were randomly taken from Alexa Top

Sites [14], and 55,000 malicious names were randomly taken

from [15]. We used 100,000 domains for training and 10,000

for validation. The ratio of legitimate to malicious domains in

both the training and validation datasets was 1:1.

For classification model training, we used the bag-of-words

model [16] which further considers an order of domain

name structure. Specifically, 2847-dimensional vectors were

extracted from each domain name string. Each element of a

vector was set to 0 or 1. In the domain names 39 character

types could be used (a, b, c, · · ·, y, z, 0, 1, · · ·, 8, 9, ., -, ),

and the maximum length of the domain names in the dataset

was set at 73. When the Nth character of a domain name is

X, which is a Kth character in 39 character types, 1 is set to

the 39(N-1)+Kth element in the vector. For example, when a

domain name ask.com is converted into a feature vector, 1 is

set to 1 (a), 58 (s), 89 (k), 154 (.), 159 (c), 210 (o), and 247th

(m) elements and 0 is set to other 2,840 elements.

Forwarding performance: In our experiments, three physical

servers (sender, forwarder, and receiver) were used. The sender

and the receiver were connected through the forwarder that



TABLE I
AVERAGE PROCESSING TIME IN EACH MODULE (µs)

RX Parser Extractor Classifier TX Total

LIBSVM 0.375 0.0972 2.173 161418.452 7.167 161428.282

Tensorflow 0.276 0.0838 1.360 69.938 0.327 72.001

●

●●

●

●

●

●
●
●

●
●●●
●
●
●●

●
●
●

●

●

●●●●
●●
●

●

●

●
●

●●
●

●●

●
●●●

●

●
●●●●●●
●

●

●

●

●●●
●●

●

●

●

●●
●

●

●
●

●
●
●●●

●

●

●

●

●

●

●

●●
●
●

●●
●

●

●

●

●●
●●

●

●
●

●

●
●●●
●
●
●

●

●●
●

●

●●
●

●

●
●
●●
●●●

●

●

●

●
●
●●

●●●●

●

●●

●

●

●

●●
●

●
●●●

●

●

●
●

●

●

●●
●●

●

●

●●●

●
●●
●
●●●●
●●
●

●

●●●
●
●

●

●●●●
●●

●

●

●●●

●
●

●

●

●
●
●

●
●
●●

●
●
●●
●

●

●

●●

●

●

●

●
●
●
●●

●
●

●●
●
●●

●

●●
●

●

●
●
●

●

●

●
●●

●●

●●●

●

●

●●●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●
●
●

●
●

●●●

●

●●
●
●

●
●●
●

●
●

●●

●
●
●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●
●●
●

●
●
●
●
●

●
●
●●
●

●

●
●
●
●
●●

●

●

●
●●

●
●

●

●
●●

●●

●

●

●

●
●

●
●
●
●●

●

●●●
●
●

●

●

●

●

●●

●

●●

●

●●

●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●

●
●

●
●●●

●

●

●●
●
●

●
●

●●
●

●

●

●
●●

●●

●

●

●

●
●

●
●
●

●

●

●

●
●
●
●

●
●
●
●●
●●

●●

●

●
●
●●●
●●

●
●●●

●

●
●

●
●

●

●●●●
●

●

●

●

●
●
●

●

●

●●●●
●

●

●
●
●

●●
●
●

●
●
●

●●●
●

●

●●

●●
●
●
●●
●●
●

●

●
●●

●
●
●

●
●

●
●●
●

●●●
●
●

●
●

●●
●

●
●
●

●

●

●
●●●●●●●

●●

●

●
●●●●
●

●

●

●

●●●●
●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●●●●●

●

●●●●●●

●

●

●●●●●
●●●●●●●●
●●●

●

●●
●
●

●

●

●●

●
●●●

●

●●●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●
●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●

●●

●

●
●●●●●●●●●●●

●
●●●●●●
●
●●●●
●
●●●●●●●●●●
●
●●●●●●
●●

●●●●

●

●

●

●●
●●●

●

●●
●
●

●

●

●●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●

●

●●●

●

●●
●
●●●●
●●
●

●●●●●●●●

●
●●●●

●
●●●●●●●
●●●●●●●
●
●●●

●
●

●●●●●●●●
●●●

●

●●●●●●●●●
●●●
●●

●

●
●●●
●●●
●●●●●●●

●
●●●●●
●
●●●●●●●●
●
●
●●●●●●●

●

●●●●

●●

●
●
●●
●
●
●
●●●●●
●●●●●●●●●
●
●●●●
●●
●
●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●
●●●●
●
●
●●●●
●
●
●
●●
●
●●
●
●
●●●●
●
●
●
●●
●
●●●●
●●●●●
●●●●●●●
●

●●●●●●
●
●●
●
●
●●●●

●

●●●●
●
●●
●●●●●●●●●●
●●
●●●●●●
●●●
●●
●●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●
●
●●●
●
●
●●
●
●
●
●
●

●

●●
●●
●●
●●
●

●

●
●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●
●
●
●●●●●
●
●●●●●
●●●●●
●●●
●●●
●●
●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●
●
●●●●●
●●●●●●
●●●●●
●●
●●
●●
●●
●●●●●●●
●●

●

●●●●●●
●●●
●●●●
●
●
●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●
●●
●●●
●●
●●●
●●●●●●
●●●●●
●
●●
●
●●●
●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●
●●●●
●●
●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●●●
●●
●●
●●●●
●
●●
●●●●●●●●●●●●●
●

●
●●●●
●
●●●●
●
●●
●
●●●●●●●●●

●

●●●●●●
●●
●

●

●
●●●
●
●
●●
●●●●●●
●●●●●●
●●
●●●●●
●●●●●●●●●
●●●●●
●●●
●●
●
●
●●●●●
●●●
●●●●
●

●

●●●
●●●●●●●
●
●●
●●●
●●●
●
●●●
●
●●●●●●

●

●●●●●●●●●●●

●
●

●●

●

●●
●●●
●
●●●●
●
●

●

●
●●
●
●
●

●

●●

●

●

●

●
●●●
●

●

●

●

●●

●●

●

●●
●

●

●

●

●●●●●
●
●

●

●
●●

●

●

●

●
●
●
●
●
●●
●

●

●
●●●●
●

●

●
●●●
●
●●●●●

●

●
●

●

●
●
●
●

●●●
●●●

●

●

●●

●

●●
●
●
●
●
●

●
●

●●
●●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●
●●●

●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●●●
●
●
●

●

●

●

●●●●

●

●

●

●●

●

●●

●●●●●●●

●●●
●

●●

●
●
●
●●
●
●
●●●●●●
●

●

●

●

●
●

●

●●

●
●
●●

●
●

●●

●

●

●

●

●

●
●●●●●●
●
●
●

●●
●
●

●
●●●
●●●
●●●
●

●

●
●
●

●
●

●
●●

●

●●●
●
●
●

●

●

●

●●
●●

●

●
●
●

●

●

●●
●
●
●
●
●●

●

●
●

●
●
●
●●
●

●

●●

●●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●
●
●

●

●

●●

●

●

●
●
●●
●

●

●●
●
●●●
●
●
●●

●

●
●
●

●

●

●●●
●●●●●
●●●

●

●●●●●

●
●●
●

●

●●
●

●
●●

●

●●

●

●

●
●●
●
●
●●
●

●
●●
●●●●●

●

●

●

●
●
●●●
●
●
●●●●

●

●

●

●
●
●
●

●●

●●●
●
●
●
●

●
●
●●●

●●
●
●
●●

●

●

●●

●
●●●
●
●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●
●

●●
●
●
●

●●

●

●
●

●

●●●●
●

●●
●
●
●●

●

●

●

●

●

●●
●

●●●
●●

●

●

●

●●●
●
●
●
●●●
●
●●●●●

●
●
●●

●

●

●●

●
●
●

●
●
●

●
●
●●

●
●

●●
●●●
●

●

●●●

●
●

●
●●

●

●

●

●●
●
●●
●
●●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●

●●

●
●●

●●●●●●●●●●

●
●●●●●●
●
●●●●
●
●●●●●●●●●●
●
●●●●●●
●●

●●●●

●

●

●

●

●●
●●●

●

●●
●●

●

●●
●●

●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●●

●
●●

●●●

●

●●
●
●●●●
●●
●

●●●●●●●●

●
●●●●

●
●●●●●●●
●●●●●●●
●
●●●

●
●

●●●●●●●●
●●●

●

●●

●●●●●●●
●●●
●●

●

●
●●●

●●●
●●●●●●●

●
●●●●●
●
●●●●●●●●
●
●
●●●●●●●

●

●●
●
●

●

●

●

●●

●

●●

●●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●●
●●

●

●
●
●●
●
●

●
●

●●
●●
●●

●

●

●

●

●

●●●●

●

●●
●
●●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●●●●●
●
●●●
●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●●

●

●

●

●
●

●●●●

●

●

●

●
●●●

●

●

●

●
●

●
●●●
●●

●

●●●●●●

●

●●●●●

●
●
●

●●

●
●
●

●●●

●

●●●●

●

●●●●●

●

●

●

●●●●●●●

●

●●

●

●●●●●

●

●●

●

●●●●●

●

●●●●

●
●●●●●

●●
●

●

●

●●●●

●

●●●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●●●●

●

●●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●
●
●

●

●
●
●
●

●●

●●●●

●
●

●●

●

●

●
●

●●●●

●

●

●

●
●●●●

●

●●●●●●●
●
●
●
●●●●●●

●●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●
●●●●
●●

●

●
●
●●

●

●●
●●

●

●

●

●

●●●

●

●●●●●

●

●●●
●
●●●

●

●
●●

●●

●
●

●

●

●●
●

●

●●●●●●●●

●

●●●●

●

●

●●●

●

●●●●
●
●

●

●

●

●

●

●●●
●●●●●

●

●●●●●●

●
●

●●

●

●

●

●

●●●●●●

●

●●●

●

●●

●

●
●

●

●
●
●●●●

●

●
●●

●●●●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●
●●

●●●

●

●

●
●

●
●●

●

●
●
●

●
●

●
●
●
●

●

●
●

●

●
●

●●
●
●

●

●

●●●

●

●
●

●

●●

●

●●

●
●
●

●

●

●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●
●

●●
●

●

●

●●●

●

●
●●●
●

●
●
●

●

●

●

●●●
●

●●
●

●

●

●

●

●

●●
●

●

●
●●
●

●●

●
●●
●●

●

●

●

●
●

●
●

●

●●

●
●
●

●

●

●

●
●

●●
●

●

●●

●

●

●●

●●

●●

●

●

●

●

●●
●
●●

●
●
●
●
●●
●

●

●

●
●

●
●●
●●
●

●●

●
●
●
●
●

●

●
●●●

●●

●
●●
●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●●

●

●
●

●

●●

●
●
●
●●●

●
●●

●

●

●●
●

●●

●●

●

●●

●
●

●

●

●
●
●●

●

●

●

●

●●

●
●
●●
●

●
●

●

●●
●
●
●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●●●●●
●●
●●●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●
●●●●●●●

●
●

●

●

●

●

●●●●●●●●●

●

●●

●
●

●●●

●

●
●
●●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●●
●
●
●
●

●

●●●●●
●
●●●

●

●
●●●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●●●
●

●

●

●

●●●

●

●

●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●
●
●

●●
●

●
●●●●●

●

●●●●
●

●
●●●●●●●●●

●

●

●●●●

●

●●●

●

●●●

●●●

●●

●

●

●

●

●
●
●●●●

●

●

●

●
●●●
●

●

●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●

●

●

●●●●

●

●●●●●●●●

●

●
●●
●
●
●●●●●●●●●

●

●

●

●
●
●●●●●●●

●

●

●●●
●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●●●●

●

●

●
●●●●

●

●

●●●●●●●●●●●●●
●●

●

●

●
●

●●

●

●●●●

●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●●●●●●

●

●
●●

●

●●●●
●●●●●●

●

●

●●●

●
●

●●●

●

●●

●

●●●●

●

●●●

●

●●

●
●●
●

●●
●
●

●

●●

●

●

●

●

●●●
●

●
●
●
●●
●

●

●

●
●
●
●●●

●●
●
●

●

●
●

●

●●

●

●

●

●●●

●
●
●●

●
●
●●
●
●
●

●●
●

●

●

●

●

●●●●
●●●
●
●●

●

●

●

●

●

●●

●●●
●●
●●●●●●●●●
●
●●
●

●

●

●

●
●
●●●
●

●
●

●

●
●
●

●●

●

●●
●●

●

●

●

●●
●
●

●

●

●●
●

●

●

●

●●●●●

●
●

●

●
●

●●

●

●●

●

●
●

●●
●
●●
●
●
●●
●
●●

●●●
●●●
●●●

●●
●●●●
●
●●●●
●
●

●

●●●
●

●
●●
●●

●●
●

●

●

●

●
●
●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●●●

●

●

●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●●●
●●●●●

●

●

●

●●
●

●●
●

●
●●●●●

●

●●●●●
●

●
●●●●●●●●●

●

●

●●●●

●

●●

●

●●●

●●

●●

●

●

●

●

●
●
●●●●
●

●

●

●
●●●
●

●

●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●●●
●

●●●●●●●●

●

●
●●
●
●
●●●●●●●●●

●

●

●

●
●
●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●●●●●

●

●
●

●
●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●

LIBSVM

Tensorflow

Fig. 2. Individual module processing times

hosts our system with the two classification modules, as

mentioned above. The sender generates and sends DNS queries

to the receiver based on the validation dataset. Both the sender

and receiver machines were equipped with Intel i7-4770K

CPUs (3.50 GHz, 4 cores in total), 32 GB of RAM, and

Intel 1G NIC. The forwarder machine was equipped with Intel

i7-6700K CPUs (4.00 GHz, 4 cores in total), 32 GB of RAM,

and Intel EXPI9402PT PRO/1000 PT Dual Port NICs. The

link speed was set at 1 Gbps and we confirmed that a sample

DPDK forwarding program could achieve that speed. We then

measured the processing time of each part shown in Figure 1

using the clock gettime function of the program.

Figure 2 shows the processing time of each module in log

scale, whereas Table I indicates average processing time in

each part. These results show that the Classifier is the most

time-consuming part of the whole processing. In practice,

97.1 % of the total processing time was consumed by the

Classifier. In the LIBSVM module, each processing part takes

longer processing time than the Tensorflow results due to some

outliers. When the average processing time was converted to

throughput, that value was approximately 4.43 Kbps (6.19 pps)

and 9.94 Mbps (13.89 Kpps) for LIBSVM and Tensorflow,

respectively.

Feature size dependency: To reduce the processing time of

the Classifier part, next we measured the impact of feature

vector size on the processing time. To accomplish this, we

changed the number of dimension from 10 to 2,847 and

compared the processing time of the Classifier parts. Figure 3

shows the processing time for each dimension size of the

features on a log scale. As can be seen in the figure, while

the time increases linearly with the number of dimension

in LIBSVM, the average time entirely falls in a range of

65 - 75 µs in Tensorflow. This result shows that the two

modules need more than 65 - 75 µs, even if the input feature

size is just 10. Table II shows the detection accuracy of the

Fig. 3. Processing time on classifier parts with different dimension size

TABLE II
DETECTION ACCURACY (%) IN DIFFERENT SIZE OF FEATURE VECTORS

Number of dimensions

10 100 1000 2847

LIBSVM 42.88 79.45 91.46 91.42

Tensorflow 59.97 75.01 87.21 87.22

classification task with different sized feature vectors. These

results confirm that adding more feature vectors improves the

detection accuracy.

C. Additional processing time

As shown in Section III-B, we show that the measurement

result of our prototype system is forwarding performance of

approximately 10 Mbps in Tensorflow, which falls behind the

required level of 1 to 10 Gbps. The Classifier is the most

time-consuming part. This part is independent of input feature

size according to the feature size dependency analysis in the

preliminary measurements. However, more features and long

processing time contribute to improving classification accuracy

of ML-based modules. Accordingly, we need to leverage more

processing time on the classification part, as well as to reduce

entire processing time on the system. To achieve the goal, we

focus on individual protocol behaviors and real traffic patterns.

On DNS protocol, for example, even the system cannot

finish classification for a received query packet from a client,

there is time to receiving the reply packet from the DNS server.

The system can use the time as additional processing time. By

this technique, we can save roughly 1 - 10 ms for each query.

In this paper, we expand the prototype architecture in Figure 1

and propose a packet classification model which achieves

ML-based attack detection in real-time. This model obtains

additional processing time outside of the packet processing in

order to avoid any modification on classification modules.



RX Parser Domain Whitelist
Filtering

Domain Blacklist
Filtering

TX

Null

Feature
Extractor Classifier

Domain Blacklist
Update

Domain Whitelist
Update

legitimate

not matched

malicious

not matched

legitimate

malicious

Stage 1: a Client to a DNS Server
(DNS query handling)

Stage 2: the DNS Server to the Client
(DNS response handling)

RX Parser Domain Whitelist
Filtering

Domain Blacklist
Filtering

TX

Null

legitimate

not matched

malicious

not matched

IP Blacklist
Update

domain exist

RX Parser TXIP blacklist
Filtering

Null
malicious

not matched

Stage 3: the Client to the Server
(initial TCP or UDP packet to the resolved IP address)

file:///home/ga-su-/Downloads/proposed_method.svg

1 of 1 2018/11/30 14:33

Fig. 4. The system architecture of proposed model

In addition, there was no overlapping between the traffic

data in the previous experiment, but real networks have

periodic patterns. Accordingly, we will not need to classify

repeated traffic by classification modules. This idea is achieved

by simple filtering methods such as whitelists or blacklists.

We integrate these two ideas into the system as illustrated

in Figure 4. The key technique for the integration is to finish

time-consuming ML-based classification during DNS name

resolution, and to apply the classification result to simple

filtering methods. The additional components include three

filtering modules, a domain whitelist, a domain blacklist, and

an IP blacklist. As five new processing parts, Domain Whitelist

Filtering, Domain Blacklist Filtering, IP blacklist Filtering,

Domain Blacklist Update, and IP Blacklist Update are added.

In our model the packet processing is classified into the

following three stages by the result of the Parser part.

Stage 1: a Client to a DNS Server (DNS query handling):

A DNS query from a client firstly passes the Domain Whitelist

Filtering part. When the query name (qname) is classified as

legitimate in this part, the packet is forwarded to the TX part.

In contrast, when the qname is not matched in the whitelist, the

packet next passes the Domain Blacklist Filtering part. When

the qname is classified as malicious in this part, the packet is

discarded on the NULL device. In contrast, when the qname

is not matched in the blacklist, the packet is forwarded to the

TX part. Then, after the transmission, the Feature Extractor

part converts the qname into feature vectors, and the Classifier

part classifies the qname. If the classification result indicates

the packet as legitimate, the qname is added to the domain

whitelist. Conversely, if the result indicates malicious, the

qname is added to the domain blacklist to block DNS queries

which has same qname in early stage without ML processing.

Stage 2: the DNS Server to the Client (DNS response

handling): A DNS response from the DNS server firstly

passes the Domain Whitelist Filtering part. When the qname

is classified as legitimate in this part, the packet is forwarded

to the TX part. In contrast, when the qname is not matched

in the whitelist, the packet moves to the Domain Blacklist

Filtering part. When the qname is classified as malicious in

this part, the packet is discarded in the system and the RCODE

in the response message is checked. When the RCODE is

NoError, IP addresses of the qname can be extracted and the

IP addresses are added to the IP blacklist to discard packets

in the Stage 3. Conversely, when the qname is classified as

legitimate in the part, the packet is forwarded to the TX part.

Stage 3: a Client to the Server (initial TCP or UDP packet

to the resolved IP address): An initial TCP or UDP packet

to the resolved IP address from a client passes the IP Blacklist

Filtering part. When the destination IP address is classified as

malicious in the part, the packet is discarded in the system. In

contrast, when the address is not matched in the blacklist, the

packet is forwarded to the TX part.

In our system, all packets pass through only simple filtering

modules, processing time of which is shorter than that of

ML-based classifiers. Accordingly, we can reduce entire packet

processing time on the system.

IV. EVALUATION

In this section, we reveal the performance of our proposed

system by two experiments. We implemented the architecture

that is shown in Figure 4 by expanding the prototype system

described in Section III. Three types of filtering methods are

implemented by using hash-based data structures. The domain

name lists such as Alexa Top 1 Million Sites [14] generally do

not contain subdomains. Accordingly, to improve a match rate

of the whitelist, an extracted domain name by the Parser part

is converted to a part of the name which consists of one label

and second-level domain (SLD) and top-level domain (TLD)

by using List of second-level domains [17].

A. System performance

Figure 5 shows the experimental environment for the

performance measurements. In this experiment, the client

sends Telnet connections to target servers which are indicated

by the FQDNs list. The list which the client queries is same



Client

Forwarder
(Our classification system)
・Domain whitelist
・Domain Blacklist
・IP Blacklist
・ML-based classifier

Target
Server

DNS cache
Server

① DNS query ② DNS query

④ DNS response

⑤ TCP to
Target Server

⑥ TCP to
Target Server

DNS Authoritative
Server

③ DNS response

file:///home/ga-su-/Downloads/experiment_environment.svg

1 of 1 2018/11/30 14:50

Fig. 5. Experimental environment

●

●

●●●●●
●●

●
●

●

●

●
●

●
●
●
●●●

●

●●
●
●●

●●

●
●

●

●
●
●
●
●

●
●

●●

●

●
●
●

●●●
●
●

●

●●

●●

●
●●

●
●●
●

●

●

●●

●

●●

●●

●

●
●●
●●
●

●

●

●●

●
●●

●

●

●●
●●
●

●

●
●●
●

●

●
●
●

●

●

●

●
●

●

●
●●●●
●
●
●

●●

●

●

●

●●●●
●●
●

●●

●
●

●

●●●
●
●

●●

●
●

●
●
●

●●
●

●
●●

●
●●

●

●
●●
●
●

●●
●

●
●

●●●

●

●
●

●

●
●
●●●●

●

●

●
●●

●
●●
●
●
●●

●●●●●

●

●●●●

●

●●

●

●
●●

●●
●●
●
●

●●
●●

●●●
●●

●

●●

●

●●
●●●●

●
●
●

●

●

●●
●
●

●
●●●
●
●

●

●

●
●
●
●

●

●
●

●
●●
●
●
●
●
●

●
●●

●

●

●

●

●●

●
●●●
●●
●

●

●

●

●
●

●

●●
●

●
●
●
●●

●
●
●

●
●●
●●
●
●
●●●
●
●●
●

●

●●●●

●●
●
●

●

●

●
●●

●
●●

●

●
●●●●●

●

●●

●

●

●

●●

●●

●

●●
●
●

●●●●
●●●●
●
●●●
●
●
●

●
●
●
●●●
●

●●●

●

●●
●●●
●
●
●

●

●
●
●●●●
●●

●

●

●
●

●●●●
●
●

●

●●●●

●

●
●●

●●●●
●
●
●

●

●
●
●●
●
●

●
●

●●
●
●●
●
●●
●

●
●

●●●

●

●

●

●
●●●
●
●

●

●
●

●
●●
●

●●

●

●

●

●

●
●

●●
●
●

●

●●

●

●●
●●
●●
●

●

●

●

●

●●●
●

●

●
●

●●
●
●
●
●
●●
●
●●
●
●
●

●

●●
●

●●
●
●
●

●

●

●
●●●●●

●

●
●

●

●●●

●
●●
●●
●

●
●
●●●
●
●
●

●

●
●

●

●
●

●

●●●

●●

●
●●

●

●
●●

●●●●●
●
●
●

●

●●
●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●
●

●●
●

●

●
●●

●
●

●●

●

●

●

●●●

●

●●●

●
●●
●

●

●
●
●
●
●

●

●●

●
●

●●●●

●
●

●●

●●
●●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●●

●●

●

●

●●●●●
●

●
●●
●●

●

●

●
●

●

●
●
●●

●●

●●
●
●●

●

●

●●
●
●●●

●

●●●

●

●

●

●●●
●

●
●●
●

●
●●

●
●

●●

●●

●●
●

●●

●

●

●●
●

●

●
●

●
●●

●

●
●
●

●●●
●●
●
●●●●●

●

●●●
●

●

●

●
●

●

●

●●
●

●
●
●
●●
●●●
●●
●●
●

●●

●
●

●
●
●●

●●

●●
●●

●

●

●
●
●

●
●

●

●●
●●
●●●●
●●●
●
●●●

●

●
●

●

●
●●

●
●

●

●

●

●●

●

●●
●●●
●●
●

●

●
●

●●●●
●
●
●●

●●

●

●●

●
●●

●

●
●
●
●
●●●
●●
●●

●

●●●
●●

●
●●●

●

●

●●
●●
●

●●●

●●●

●

●

●
●●●

●●
●

●

●
●
●
●

●●

●

●
●

●

●

●

●●

●
●

●

●●
●●
●
●
●

●

●

●●

●

●
●

●

●

●

●
●
●
●●
●●

●

●
●

●●
●●
●

●

●
●
●
●●
●●

●
●
●
●

●●

●
●

●

●●●
●

●

●

●

●

●

●●

●

●●
●

●

●
●
●
●●

●
●

●

●

●●●

●

●

●

●●●●
●
●

●●
●
●●●

●
●
●
●

●

●●●
●
●

●

●
●
●

●●
●
●
●
●
●
●

●
●●
●●

●●
●●

●●

●

●●
●●
●●
●
●
●
●
●●

●
●
●

●

●
●
●●

●

●

●
●
●

●●
●

●●
●
●

●

●
●
●
●

●

●
●●
●
●
●
●●●●●●
●
●
●
●
●

●
●●
●
●

●

●

●
●●
●●
●●
●
●

●
●●●
●
●●

●

●●

●●●
●
●●●
●●

●
●

●●
●
●●

●●
●

●

●
●

●

●

●●

●●
●
●●
●
●

●

●●●

●

●
●

●

●

●

●
●
●●●

●●
●

●

●
●●
●●●

●

●●

●

●●
●
●

●
●●
●●●●●

●

●●
●

●

●
●
●●
●
●

●

●●
●

●

●
●

●
●

●●●
●●

●●

●
●●●
●

●●

●

●

●●
●

●
●

●
●●●●
●●●

●

●●
●

●●●
●
●

●●

●

●●

●
●

●●
●●●●●
●
●
●●●

●

●
●●
●

●

●●
●●●

●
●●
●●

●●

●●
●●
●
●
●

●

●●

●

●

●

●●

●

●
●

●

●

●●●●●
●●●

●

●●
●

●
●
●
●
●●
●●
●
●
●

●

●●●
●

●●

●

●●
●●
●

●

●
●

●
●●
●

●
●

●

●
●●
●

●

●

●
●
●

●●

●

●
●
●●

●
●

●

●
●
●●

●

●●
●

●

●
●

●
●
●
●

●

●●●

●●
●●
●

●
●●●●
●

●●●

●

●

●

●
●

●●
●●
●●●
●

●●

●
●●
●●

●

●

●
●
●
●●

●

●
●

●●

●
●

●
●●●●●●

●

●
●

●

●

●
●
●

●

●

●●

●

●●
●●
●

●●

●
●●

●
●
●
●
●
●
●

●

●

●

●

●

●
●●●

●

●●●

●

●●

●
●

●

●
●
●●●●

●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●●
●●●

●●●
●

●●

●

●
●

●

●

●

●
●
●●

●
●

●

●●●

●

●
●

●

●

●
●
●

●

●

●●●
●
●●
●
●●
●
●
●

●
●

●

●
●

●
●●

●

●●

●

●

●●
●
●
●

●

●

●

●

●●
●
●
●●
●●
●
●●●●
●
●●

●
●

●●

●●●●

●

●

●
●
●

●●●●●

●
●●

●

●●
●●●

●

●

●

●
●

●●
●●●

●
●

●
●●

●
●●
●●●●
●
●●
●
●●
●●●●●
●
●
●

●
●

●●

●

●
●
●●
●
●

●
●
●●●●
●
●
●
●
●

●
●

●

●
●●
●

●
●●
●●
●
●

●

●

●●
●●●

●

●
●

●●●

●
●
●●
●

●●
●
●

●
●
●

●●●

●

●
●

●

●●

●●
●
●●
●

●

●●
●

●
●
●
●

●

●●●
●

●

●●
●●
●●

●●●●

●
●
●●
●
●
●
●

●
●
●

●

●

●●

●

●
●●●
●

●
●
●
●●

●
●

●

●●

●

●

●●
●
●

●
●●
●
●●
●●

●

●

●●
●
●

●●
●
●

●
●●●

●
●●●
●●●

●●

●●●●

●
●
●

●
●●

●
●●●●
●

●●

●●

●

●
●
●●●

●
●
●
●

●●●

●●●
●

●●●

●

●

●
●●
●●
●
●●
●●

●

●
●

●
●
●●
●
●●●
●
●●
●
●
●
●

●

●
●●
●●

●

●●

●
●●●
●

●

●

●
●

●●
●
●
●

●

●

●●
●
●

●●
●

●

●
●
●●●
●
●●●
●

●●●●
●

●
●●
●
●

●
●

●
●●

●
●

●
●
●
●
●
●

●
●
●
●

●
●●●
●

●

●●

●
●

●

●
●●

●●

●

●
●●

●●●

●
●
●

●

●

●
●

●

●
●●

●
●

●

●

●●●●●
●
●

●
●●●
●
●
●
●

●

●

●

●
●
●

●●

●

●
●●●●

●

●

●

●

●
●●

●●
●
●

●●

●

●
●
●
●

●
●●●
●●
●●

●
●
●●
●

●●

●
●

●
●●
●
●
●

●

●
●
●
●

●
●
●
●●

●

●●●●●
●●
●
●
●
●
●
●

●●

●

●●

●

●
●

●
●
●
●

●
●
●

●

●

●
●

●
●
●

●

●
●
●●

●

●

●
●●●

●

●●

●

●
●
●

●

●●●●
●

●●

●

●
●●

●●

●
●
●
●

●●
●

●●●

●
●
●

●●

●
●
●
●●
●
●

●
●
●

●●

●
●

●

●

●
●
●

●●●

●
●
●
●
●

●●

●●

●
●●●
●
●
●
●
●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●●●●●●●
●●●●●●●●●●
●●●
●●
●

●

●●●●●●●●●●●
●
●
●

●
●

●

●

●
●●●
●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●
●●●

●

●

●●●●●●
●

●
●
●
●

●
●●
●●

●●
●●
●

●
●
●
●●

●
●

●●
●●
●
●
●

●
●
●
●
●
●
●
●

●

●

●●●
●

●

●
●

●●

●●
●
●

●●●

●

●●

●●
●

●

●

●

●

●
●
●
●
●
●
●●

●
●●●

●

●●

●●

●●●
●●

●
●●

●

●

●

●●

●●

●

●●
●●

●
●
●●
●
●

●●
●

●

●●
●●
●●
●

●●
●●●●
●
●●
●
●●
●
●●

●

●

●
●
●●●●●●
●
●●

●

●
●●
●
●
●
●
●
●

●●

●
●●●
●

●

●
●●

●●

●
●
●

●●●

●
●●
●●
●●
●●●

●
●●
●
●●
●

●●

●

●
●

●●

●●
●
●●●●
●
●

●
●
●●●●
●
●●●
●●

●

●●●

●●
●
●

●
●
●

●
●●

●

●

●

●

●

●
●
●

●●●
●
●

●●
●●
●

●

●
●

●

●
●●
●
●●
●

●
●
●
●
●

●

●

●

●
●
●

●
●●
●

●

●●
●
●●●

●●

●●●
●
●●

●●

●

●

●

●●●
●

●

●●
●

●

●

●

●

●
●

●●

●

●

●
●
●
●●
●●●
●●
●
●●●

●
●
●●
●●
●
●●
●

●
●●
●
●

●
●
●●
●
●●●
●●●●
●
●

●

●●

●
●

●

●

●

●

●
●●

●
●
●
●
●
●

●

●●

●
●

●●
●

●

●
●

●
●
●
●
●
●
●
●

●

●
●
●

●

●

●
●

●
●

●●
●
●
●
●

●

●●

●
●
●●
●
●

●

●

●●
●●
●●
●●
●
●
●●
●

●
●
●

●

●●●●

●

●●

●
●●
●●
●
●

●●●
●●

●●

●

●

●

●

●

●

●
●●
●
●

●●

●

●

●
●
●
●
●●
●
●
●
●
●

●

●
●●●●●
●

●
●

●

●

●

●
●●●
●

●
●
●

●

●

●

●●

●
●
●●●

●

●
●
●

●
●
●
●
●●

●

●
●
●

●

●●●●

●
●
●
●
●●
●●●

●

●

●

●

●

●

●

●
●●●

●

●

●
●
●
●

●●●

●
●
●
●
●

●
●
●
●
●●●

●
●●

●

●

●

●
●●
●●●●

●●

●
●

●
●

●

●

●

●
●
●●●●●●
●

●

●●

●

●

●●●
●
●

●●
●

●
●
●

●

●●●●●
●●

●

●

●
●●
●
●
●

●●
●●
●
●

●●
●
●
●●
●

●●●●

●

●
●

●
●●

●

●

●

●

●

●
●
●●

●

●●●

●
●

●

●●

●

●

●

●
●●
●

●●

●

●

●
●●

●
●

●●●●

●

●●●

●

●●●

●

●
●
●●

●

●

●●

●●
●

●
●●●
●
●

●

●
●●●●

●

●

●

●●
●
●

●
●
●
●●●

●

●
●●
●

●●

●
●●
●
●

●
●●
●

●

●
●
●●

●●
●
●

●

●
●
●
●
●
●●

●
●
●

●

●
●
●
●

●
●

●●●
●

●

●
●●
●

●
●

●

●

●
●
●●

●

●

●●
●●

●
●●

●

●

●
●

●●

●

●●
●●●●
●
●●●●

●
●●●●
●●

●
●●●
●●

●●
●
●

●

●
●
●
●●
●●●

●
●

●
●

●

●●●

●
●●

●

●

●
●●
●
●●●

●
●
●

●●

●

●●

●●●

●

●●
●
●

●
●
●

●

●
●
●

●●●

●

●●●

●
●

●●

●

●●

●●
●

●●

●
●
●●
●●●
●●

●●●

●
●
●●
●

●

●●
●●
●●
●
●

●

●●●●
●●

●

●
●

●
●
●

●

●

●
●
●●●
●

●●
●

●

●
●●

●

●●
●●

●
●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●●●●●

●

●

●●
●
●

●

●●

●

●

●

●●

●●

●
●

●

●
●
●
●

●●

●

●●●

●

●
●
●
●
●
●
●
●

●
●
●

●

●
●
●●

●

●●

●
●

●
●
●
●●

●

●

●

●

●
●
●●
●●

●●●●
●

●

●
●●●●

●●
●

●

●

●

●

●●●

●

●●
●

●●●

●

●

●

●

●●

●

●
●●

●●●
●●
●●

●●

●●

●

●

●

●●
●

●
●
●
●●●●●
●
●
●
●
●●

●
●●●
●

●

●
●
●●●
●

●●
●

●●
●
●

●
●

●

●
●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●
●
●
●●●

●

●
●
●

●●
●

●

●●
●●
●
●

●

●

●
●

●

●●

●●●

●
●

●
●
●
●●

●●
●
●

●●

●
●

●

●●
●●●

●

●

●●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●
●●
●●

●●
●

●●
●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●

●

●

●●

●

●

●
●●

●

●●●●

●

●●●●●

●

●●

●
●
●
●●

●●●

●

●

●

●

●

●
●

●

●●
●●
●●
●●

●

●

●●

●

●●●
●●

●●●●

●●
●●
●●

●
●

●

●
●●●●
●
●
●
●

●
●

●●

●
●
●

●

●
●
●

●

●

●
●●
●

●
●●
●●

●●

●
●●
●●●
●

●

●
●
●
●

●
●

●

●●

●

●
●

●

●

●●●
●●●
●
●

●●
●

●

●

●
●
●
●
●

●
●●

●

●

●●

●

●●●

●●●
●
●

●

●●

●●●●
●

●

●●

●●●●

●
●
●
●●●●

●●

●●
●

●

●●●●

●
●●●●

●
●

●
●
●
●
●

●
●●

●

●
●●
●●
●
●●
●●

●
●
●
●●

●●
●
●●
●●
●
●
●

●
●●●
●
●

●

●●●●●
●

●

●
●

●

●
●●
●

●
●
●
●●

●
●●

●

●

●
●

●
●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●
●
●●
●
●

●●

●
●●
●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●
●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●
●●●
●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●
●●

●

●

●

●●●●

●

●
●●

●

●

●

●●●

●

●●●

●

●

●

●
●

●●

●

●●
●

●

●●
●●
●●●●
●
●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●
●

●●
●
●

●
●

●
●
●●●●

●

●
●
●
●

●●●●
●
●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●
●

●

●●
●

●

●

●
●●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●●

●●●●
●
●●●
●

●
●
●

●

●

●

●

●

●●
●●
●

●●

●

●

●

●
●●
●
●

●

●●
●
●

●

●
●

●

●

●

●

●●●

●
●
●●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●
●

●
●

●

●
●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●
●

●

●

●
●
●

●

●

●●

●●
●
●
●
●●
●

●
●
●
●●

●

●

●
●●●●

●

●

●

●●

●

●

●
●

●

●●

●

●●●●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●

●●

●●
●●

●
●

●●
●
●●
●
●

●

●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●●●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●●●

●

●●

●
●

●
●
●●●
●

●

●

●

●
●●

●

●
●

●

●

●

●
●
●●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●
●●●

●

●

●
●
●

●

●

●

●

●
●●

●
●
●●
●
●
●
●
●
●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●●
●
●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●
●

●●
●
●●●

●
●
●
●

●

●
●

●

●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●
●
●●
●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●
●

●
●

●

●●

●

●

●

●

●
●●
●●

●●
●
●

●●●

●
●
●
●
●

●

●●
●
●●
●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●●

●

●●
●●●

●●

●

●

●
●
●

●
●

●●

●●

●

●
●
●

●●

●●
●●
●●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●●
●
●
●

●

●

●
●●●●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●●
●

●●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●

●●

●
●
●
●
●

●
●

●

●●

●

●●
●
●
●

●
●
●

●

●

●
●
●
●
●

●

●●

●

●

●
●
●

●

●●

●

●●

●

●
●

●
●
●●●

●●

●

●

●
●

●
●
●
●

●●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●
●

●●

●

●
●

●●●

●

●
●

●●
●

●
●

●●
●●

●●

●
●●
●

●●●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●
●
●

●●

●
●

●

●

●●●
●

●
●

●●

●

●

●●

●
●
●
●●

●

●

●●

●

●

●●
●●

●●
●●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●●●●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●
●
●●
●●●
●

●
●

●

●

●
●

●
●

●● ●●
●●

●

●

●

●

●

●
●
●●

●

●
●
●

●
●
●

●
●●●●

●

●●●
●●●

●

●
●

●
●●●
●
●●
●

●

●●●
●
●

●●
●

●
●

●

●

●

●
●

●
●●●
●

●●

●
●
●

●●●●

●

●
●

●
●
●●●●●●●
●
●●●●●
●
●
●●
●●
●

●●

●●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●

●●
●●●●

●

●

●●
●●●●
●
●●

●

●●●●●
●
●
●
●
●●●●
●

●

●●●
●
●

●

●

●●
●
●
●●●

●
●●
●

●

●●●●●●
●

●
●
●

●

●

●●

●

●●

●

●●

●

●

●●●●●
●●
●

●

●

●

●

●
●●●
●

●

●

●
●●
●

●
●

●●
●

●●
●●●

●●
●
●●
●●●
●●
●●
●●
●
●
●

●

●
●●

●

●

●

●●
●

●
●

●
●

●

●●
●●●
●
●●

●

●

●
●
●
●

●
●
●
●●
●

●●

●

●

●

●●●
●
●
●
●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●
●●●

●

●●●
●

●

●
●●●

●
●

●
●
●

●
●
●●
●
●
●●
●
●

●●●
●●
●●

●●
●●

●

●●

●

●
●●
●●
●
●

●

●●
●
●●●
●
●

●

●

●

●

●

●●
●

●

●
●
●●
●

●
●●
●●
●
●
●●●
●
●
●
●●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●

●
●
●

●
●●
●

●
●

●●●
●
●

●

●
●

●
●
●
●
●
●

●
●●●
●
●
●
●
●●●

●
●
●
●
●
●
●

●●
●●●●

●

●

●

●
●
●●

●

●●●●●

●

●
●

●
●●

●

●

●●●●

●●

●●

●

●●

●

●●

●

●

●

●●
●

●●
●●●

●

●●●

●

●●

●

●
●
●

●
●●●

●

●●
●
●
●●
●●
●

●

●

●

●

●

●
●
●
●
●

●

●

●
●
●●●●
●
●
●●

●
●

●

●
●
●

●

●
●●
●●●
●●
●
●
●●

●

●

●
●●●
●

●

●

●

●

●

●
●

●

●●●
●
●
●●●●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●●
●●

●

●

●
●●

●

●●
●

●

●

●

●

●
●
●
●
●●
●
●●●
●

●

●

●
●
●

●●
●
●●●●
●●
●

●
●
●

●●●●

●

●
●

●

●
●

●

●

●

●●

●

●●●●
●
●
●
●●●
●
●●●

●

●

●

●
●●●

●

●

●

●
●

●

●●
●●●●
●●

●

●

●
●
●

●
●

●
●
●

●

●
●
●●●●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●●
●●●
●

●
●
●

●●

●●
●

●

●

●
●
●

●

●

●
●

●

●●
●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●●
●
●

●●
●

●
●

●
●●●
●●●
●●●●●

●
●

●

●●

●

●●

●

●

●
●
●

●

●

●

●
●

●●●
●●●●

●

●

●

●●
●
●
●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●●●
●●●
●

●

●

●

●
●

●
●●
●
●●
●●●
●●
●
●

●●

●
●

●

●●●

●

●
●●
●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●●

●

●

●

●
●
●
●
●

●
●●●

●

●

●

●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●
●●
●

●

●

●

●

●
●●●

●●

●●●

●●

●●
●●

●

●●●●●●
●
●●

●

●

●●●
●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●
●●●
●
●

●

●
●
●

●

●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●●●●
●

●

●●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●
●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●●●●
●●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●
●●●●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●

●

●
●
●

●
●

●

●●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●
●●●●●●●●●●●●●●●
●
●

●●

●
●
●

●
●●●●
●
●●
●

●

●

●
●●
●
●●●
●
●●●●●●
●

●

●●●●●
●
●

●
●

●

●●

●

●
●
●
●

●

●●●●●●●

●

●
●●●●●●●
●
●●●

●

●

●

●●●
●

●

●
●

●

●●●●●●●●
●
●

●

●●●●●●●●●●●
●●●●●●
●
●●●
●●
●●●
●●
●●
●
●●
●
●●
●
●●

●

●●●
●●●
●●
●
●●

●●

●

●

●●●●●●●●●●●●
●●●●●●
●
●●●●●●●
●●●
●

●●
●●●●
●

●

●

●
●
●●●●●●●●●●
●●●●●●●

●●

●●

●

●●●●●●●●●●●

●

●●

●●●●●

●

●
●

●●
●
●
●
●

●

●
●

●

●

●●
●●

●

●

●
●●

●●
●

●

●
●

●
●

●
●
●

●

●

●●●

●
●
●

●

●
●●●

●

●
●●
●

●

●

●●
●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●●
●
●

●

●

●●
●

●

●

●
●
●●

●●

●
●
●●●
●●
●
●

●●

●

●

●●●●

●

●
●

●

●

●

●

●

●●
●

●

●●
●●

●
●●

●

●

●

●
●
●
●

●●

●

●

●

●●●●
●

●

●●●
●
●

●●
●
●

●
●
●
●

●

●
●

●

●
●

●

●●

●●

●

●
●●●

●

●●
●

●

●

●

●
●
●
●

●

●

●●
●

●

●●

●

●

●

●
●●

●

●
●

●

●●

●●
●

●

●
●●●

●

●

●●●
●
●

●●

●

●
●

●●●●
●●

●

●●

●●
●●

●

●

●
●

●
●
●
●●
●
●

●●●●
●
●●

●●●

●

●●●●●●●

●

●
●

●

●
●
●●

●

●●
●

●

●

●

●

●

●

●

●
●●●
●
●

●
●
●

●

●●
●

●

●
●
●

●●

●
●

●●
●

●
●
●●●
●

●●
●●●

●

●●●

●

●●

●

●

●●●
●●●●
●
●
●
●●

●●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●
●
●
●

●

●

●

●●
●
●●
●●
●
●
●
●●
●
●●

●

●●●
●

●●

●

●
●
●
●
●

●

●

●

●
●●

●

●●

●●

●
●

●●●

●

●
●
●

●

●●

●
●

●

●●
●

●

●

●
●
●●

●●
●●
●●

●
●
●
●

●●

●●
●●

●

●●
●
●
●●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●
●

●●
●
●
●
●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●●●●●
●

●
●

●
●●

●

●●
●

●

●●
●

●
●
●●●

●

●
●
●●●
●
●●●
●
●

●

●

●

●
●

●

●●●
●●

●
●●
●●

●

●

●
●

●●

●
●●

●●●

●

●

●

●

●

●●

●

●
●

●●●

●

●
●●
●●
●
●
●

●●

●
●
●

●

●

●

●

●

●●
●
●
●
●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●●
●●
●●

●
●
●

●
●

●●

●

●

●●

●
●
●●

●
●

●

●●

●

●
●
●
●

●

●

●●●
●●
●
●

●

●

●●●●
●

●●

●
●●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●
●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●
●●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●●
●●
●●

●

●
●

●

●

●

●

●

●

●●
●
●●

●

●●
●

●●

●

●●

●

●

●

●●●●●
●

●
●
●
●

●
●●

●

●

●

●

●

●

●

●●

●

●
●
●●
●
●●
●●
●
●
●
●

●
●●

●

●
●
●●

●●

●

●

●
●●
●
●
●●

●●
●●●
●●●

●
●
●
●●●●●
●
●

●

●

●

●●
●
●

●

●●

●

●

●
●●●●●

●

●●●
●
●
●●●
●
●
●
●
●

●

●
●
●

●●

●●
●●●●●●

●

●
●●●
●

● ●

●

●●

●
●

●

●

●●

●

●●
●
●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●●

●
●

●
●
●

●●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●
●

●
●

●
●

●

●●●

●

●

●

●
●●

●

●

●
●

●

●

●●
●

●●

●

●
●●

●

●
●
●

●

●●●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●
●

●●●

●

●
●●

●

●
●●
●
●
●

●●

●
●
●
●

●●

●
●
●●

●

●

●●
●

●●●
●●

●
●●●
●
●

●●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●
●
●

●

●●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●●●

●
●
●

●
●

●

●
●

●

●●

●

●

●

●

●●●

●
●

●
●●

●●
●●

●

●
●

●●●●
●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●●●●●
●●
●
●

●

●●●

●●

●

●●●
●
●

●

●
●
●●

●

●

●

●●

●●

●

●

●
●

●

●●
●

●

●

●
●●
●●●

●

●
●

●●●

●

●

●

●
●
●
●●
●
●

●●

●
●
●

●
●

●

●

●
●
●

●
●●

●
●●
●

●

●●

●
●

●

●●
●
●
●

●
●
●

●●

●
●

●●

●

●●●
●

●●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●●●●●
●●●
●●
●

●

●

●

●
●

●
●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●●

●●
●
●
●

●

●
●

●

●
●
●
●
●

●

●●●

●
●

●
●

●

●
●

●

●

●

●

●
●●
●●●
●
●●●

●

●

●●●
●

●

●

●●●

●

●●

●
●●

●●●
●

●

●

●

●

●

●
●●

●

●

●

●
●
●
●
●●●
●

●●

●●
●

●

●
●

●●

●

●●

●
●

●●

●
●

●

●

●●

●
●
●●
●
●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●
●
●
●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●●

●

●●

●

●●

●

●●●

●
●

●

●

●
●●

●

●

●●

●●

●●●

●

●●

●
●
●
●

●

●

●●

●
●

●●

●

●●
●

●
●
●

●

●
●

●
●

●●

●

●●
●

●

●●●

●

●

●
●
●●

●
●●●

●●

●

●

●●

●

●●

●
●
●

●●
●

●

●●

●

●

●●
●
●
●
●
●

●

●●

●

●
●

●
●●●
●
●●
●

●

●

●●

●

●
●
●

●
●

●

●●

●

●●●●

●
●●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●●●

●●
●

●

●●

●

●
●●
●●

●

●●

●
●

●
●

●

●●●

●

●●

●
●

●

●

●
●●
●

●

●

●

●
●

●
●

●
●●
●●

●

●

●

●

●

●

●
●
●●
●●

●●
●

●
●

●
●

●

●
●

●●

●

●●

●
●
●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●●●●

●
●●●●

●

●●●
●
●
●

●

●●
●●●●●●

●

●

●

●●●●●●●●●●●
●●●●

●

●●
●
●●●
●

●

●

●

●●●

●●

●●

●

●
●●●●

●

●●

●

●

●●●

●●●●●●●

●

●

●

●●●●●●
●

●

●
●●●●●●●●●●●●●
●
●●●●●●●●

●

●
●●●●●●●●●●●●●
●●●
●●●●
●●●
●

●

●●●
●●●●●●
●●●●

●

●●●●●●●
●

●

●●●●●●●●●●●●●

●

●
●

●●●●●●●●●

●

●●●●●●●●

●

●●
●●●●●●●●●●●●●

●

●

●

●
●
●●●
●●●●●

●

●●●
●

●

●●●●●●●●

●

●

●
●

●

●●●●
●
●
●

●

●

●

●●●●●
●
●●
●
●
●●●

●

●●●●●●●
●
●
●
●
●
●●●●●
●●
●●●●●
●
●
●●●●●●●
●●
●
●●●●

●

●
●
●

●
●

●●●●●●
●
●●●●●●
●
●●●

●

●
●●
●●●

●

●

●

●●●
●●●
●●●
●
●
●
●
●
●●●
●●

●

●
●●
●
●●●

●

●●●●

●
●●●

●

●●●●●●●
●
●●●●●●●●●●●●
●●●●
●
●●●●●●
●
●●●●●
●●
●
●●●●●●

●

●
●
●●●●●
●
●●●●●●●●●
●●
●●●●

Fig. 6. Processing time in each stage

Fig. 7. Name resolution time for each query

as the validation dataset of the preliminary experiment. The

DNS cache server resolves the names. The forwarder hosts

our system. We assumed that malicious activities have not

been observed in the environment. For this reason, in this

experiment initial table size of the three lists are set to

10,000, 0, and 0 for the domain whitelist, the domain blacklist,

and the IP blacklist, respectively. We use OpenDNS Random

Sample List [18] as the initial domain whitelist, which has 9

overlapping domains with the FQDNs list.

The ”Synthetic dataset” column of Table III shows the

number of domains which are classified in each stage. The

”Forward to classifier” row indicates the number of domain

names which passed the Classifier part, and the prediction

result. The ”Passed all stage” row indicates the number of

initial TCP packets classified as malicious based on the

Stage 1, but the classification could not finish before the

initial packets forwarded to the server. The result shows that

99.98 % of malicious queries are filtered before the initial TCP

traffic arrives at the resolved IP address in both LIBSVM and

Tensorflow modules.

Figure 6 shows the processing time from the RX part to the

TX part in each stage. In the Stage 1, the total time is reduced

by approximately 55 µs for Tensorflow as compared to the

original processing time as we measured in section III. On the

other hand, approximately 1 - 20 µs of additional processing

time is introduced by our system in the Stage 2 and Stage 3

compared with the prototype system, because the prototype

has no processing module for DNS response packets and initial

TCP packets..

In figure 7, the ”Synthetic dataset” line shows the CDF of

resolution time for each DNS query. This result confirms that

our system can save approximately 0.01 - 1.0 s additional

processing for ML-based classifications.

B. Performance with real traffic

Next, we measured the performance with a real DNS query

dataset which has periodic patterns as validation dataset which

contains collected 24-hour period DNS queries in an academic

research network in Japan. The details of the traffic are

shown in Table IV. We created the whitelist by using Alexa

Top 1 Million Sites [14]. In this experiment, 10,000 FQDNs

were randomly chosen from the dataset, which has 5,891

overlapping domains with the whitelist. The initial values

of the three lists are set to 1,000,000, 0, and 0 for the

domain whitelist, the domain blacklist, and the IP blacklist,

respectively.

The ”Real traffic” column of Table III shows the number

of domains in each stage. The result shows that our system

can filter out 100 % of malicious queries in real traffic, too.

The processing time from RX to TX in Figure 6 shows no

significant difference between the synthetic dataset and real

traffic. In figure 7, the ”Real traffic” line shows the CDF of

resolution time for each DNS query. In real traffic, periodic

queries hit the cache in the DNS cache server. For this reason,

the time that our system can obtain for ML-based classification

is 53.7 % shorter than that of the synthetic dataset on average.

V. DISCUSSION

In this section, we discuss the performance of our system

and our approaches to fill the gaps in real-time ML-based

attack protections. In the proposed processing model, available

processing time for classification algorithms depends on DNS

resolution time between clients and DNS servers. Additionally,

the time is not stable and varies with network environments.

As a future work, we conduct performance measurements with



TABLE III
THE NUMBER OF DOMAINS IN EACH STAGE (10,000 DOMAINS)

Synthetic dataset Real traffic

Stage Decision LIBSVM Tensorflow LIBSVM Tensorflow

1

Legitimate 9 9 5,891 5,891

Forward to classifier
Legitimate

9,991
5,516

9,991
5,519

4,109
3,056

4,109
2,251

Malicious 4,475 4,472 1,053 1,858

Malicious 0 0 0 0

2
Legitimate 5,525 5,528 8,947 8,142

Malicious 4,474 4,471 1,053 1,858

3
Legitimate 0 0 0 0

Malicious 0 0 0 0

Passed all stage 1 1 0 0

TABLE IV
DETAILS OF DNS QUERY TRAFFIC DATA

Index Value

Period 2018-1108-06:28:31 - 2018-1109-06:28:22

Total amount 28165972

Variety of qname 786611

different type of DNS resolvers such as a public DNS server to

reveal general time, and need to examine available classifier

algorithm except for SVM and neural network. In addition,

we also explore to use other features to improve classification

accuracy by the algorithms. In this paper, the classifiers use

only simple features acquired from qnames, and the features

are not sufficient for advanced classification algorithms in

cyber security.

Our system can operate only one ML-based detector at the

same time. However, to detect various malicious activities in

networks, multiple detectors are needed to operate at the same

time, as mentioned in Section III. We consider methods such

as parallelization to operate multiple detectors simultaneously.

Furthermore, to improve the software routing performance of

our system, we intend to review and reuse current methods

such as pipeline structure or CPU affinity methods.

VI. CONCLUSION

In this paper, we discussed the need for ML-based attack

detection during real-time packet forwarding as a method

of preventing security incidents to avoid significant damage

on users and network resources and to reduce security

operation costs. As a potential solution, we firstly proposed

and implemented a prototype system, and then evaluated its

performance levels by experiments in order to clarify its

architectural limitations and bottlenecks. Based on the results,

we then proposed the DNS packet processing model that

realizes ML-based attack detection in real-time by completing

the classification during DNS name resolution. Our evaluation

shows that almost all malicious queries are filtered before the

initial TCP traffic arrives at the resolved IP address.

ACKNOWLEDGMENT

This work was supported by JST CREST Grant Number

JPMJCR1783, Japan.

REFERENCES

[1] M. Zouina and B. Outtaj, “A novel lightweight url phishing detection
system using svm and similarity index,” Human-centric Computing and

Information Sciences, vol. 7, no. 1, p. 17, 2017.
[2] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning

approach for network intrusion detection system,” in Proceedings of

the 9th EAI International Conference on Bio-inspired Information and

Communications Technologies (formerly BIONETICS). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2016, pp. 21–26.

[3] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From
intrusion detection to attacker attribution: A comprehensive survey of
unsupervised methods,” IEEE Communications Surveys & Tutorials,
2018.

[4] X. Luo, L. Wang, Z. Xu, J. Yang, M. Sun, and J. Wang, “DGASensor:
Fast Detection for DGA-Based Malwares,” in Proceedings of the

5th International Conference on Communications and Broadband

Networking. ACM, 2017, pp. 47–53.
[5] B. Yu, D. L. Gray, J. Pan, M. De Cock, and A. C. Nascimento,

“Inline dga detection with deep networks,” in Data Mining Workshops

(ICDMW), 2017 IEEE International Conference on. IEEE, 2017, pp.
683–692.

[6] A. K. Sood and S. Zeadally, “A taxonomy of domain-generation
algorithms,” IEEE Security & Privacy, vol. 14, no. 4, pp. 46–53, 2016.

[7] G. Farnham and A. Atlasis, “Detecting dns tunneling,” SANS Institute

InfoSec Reading Room, vol. 9, pp. 1–32, 2013.
[8] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and

detecting fast-flux service networks.” in NDSS, 2008.
[9] Y. Nakajima, T. Hibi, H. Takahashi, H. Masutani, K. Shimano, and

M. Fukui, “Scalable high-performance elastic software openflow switch
in userspace for wide-area network,” Proc. Open Networking Summit

(ONS 2014), Santa Clara, CA, 2014.
[10] K. Alrawashdeh and C. Purdy, “Reducing calculation requirements

in fpga implementation of deep learning algorithms for online
anomaly intrusion detection,” in Aerospace and Electronics Conference

(NAECON), 2017 IEEE National. IEEE, 2017, pp. 57–62.
[11] I. D. P. D. Kit, https://www.dpdk.org/, 2018.
[12] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector

machines,” ACM transactions on intelligent systems and technology

(TIST), vol. 2, no. 3, p. 27, 2011.
[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[14] K. R. Competitive Analysis, & Website Ranking — Alexa. (2018)
https://www.alexa.com/.

[15] D. N. O. Project, https://data.netlab.360.com/dga/, 2018.
[16] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:

learning to detect malicious web sites from suspicious urls,” in
Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2009, pp. 1245–1254.
[17] “List of second-level domains - domains index,”

https://domains-index.com/downloads/list-of-second-level-domains/,
2018.

[18] “opendns/public-domain-lists: Opendns public domain
lists of domain names for training/testing classifiers,”
https://github.com/opendns/public-domain-lists, 2018.


