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ABSTRACT
Syslog is a valuable information source to detect unexpected
or anomalous behavior in a large scale network. However,
pinpointing failures and their causes is not an easy problem
because of a huge amount of system log data in daily op-
eration. This preliminary study discusses a method extract-
ing failures and their causes from network syslog data. The
main idea of the method relies on causal inference that re-
constructs causality of network events from a set of the time
series of events. Causal inference allows us to reduce the
number of correlated edges by chance, thus it results in better
accuracy than a traditional cross-correlation based approach.
We demonstrate a potential ability of the causal inference al-
gorithm with a case study, applying it to real network syslog
data.

1. INTRODUCTION
Maintaining a large-scale network reliably has been

a fundamental requirement in network management. It
is however not an easy task in reality because of highly
distributed, ever-evolving, and heterogeneous nature of
operational networks [2]. One of the effective ways to
track network status is to deploy monitoring agents in
the network and collect log information corresponding
to a change of status. In operational networks, sys-
log [1] is widely used for such purpose. The detailed
log messages allow us to better understand failures and
their causes. Nonetheless, it is usually hard for network
operators to identify them because of a large number of
system log messages produced by a large set of network
devices (e.g., routers, switches, and servers).

To this end, various approaches have been taken for
improving network monitoring and diagnosis with log
messages. A simple approach is clustering log messages
related to a network event (e.g., failure) into a corre-
lated group, and analyzing the group in detail. One of
the problems of log analysis is that co-occurrence of log
messages does not always mean causal relations. Some
existing works achieve contextual analysis by inferring
causal relations among events in system logs [5, 6, 12].
However, appearance of network log messages is discrete
and sparse; it makes us difficult to identify causality of

events even with these approaches.
This study aims at extracting causal relations beyond

co-occurrences in log messages in order to identify im-
portant network events and their causes. Causal rela-
tions in log messages help detect root causes of trouble,
or enable further analysis leveraging on causalities [8,9].
There are some issues when applying cause inference al-
gorithms to the network logs; (1) A large-scale network
is composed of multiple vendor’s devices, and various
types of messages appeared in the network. (2) Oc-
currence of messages is discrete and sparse that is not
assumed in causal inference algorithms. (3) All of the
detected causalities are not necessarily important, in
the context of network management.

To overcome these issues, we discuss a mining algo-
rithm built on causal inference. We apply our proposed
algorithm to syslog messages collected from a R&E net-
work in Japan [11]. We obtain a reasonable number of
causal relations with our approach. With case studies,
we demonstrate the effectiveness of our approach.

2. METHODOLOGY

2.1 PC algorithm
The key idea of our proposal is to detect causality

of two given events in network logs. The causality is
a special case of the co-occurrence defined by a posi-
tive correlation coefficient. A popular approach to de-
tect the causality is to remove pseudo correlation with
conditional independence. Many causal inference algo-
rithms assume a direct acyclic graph (DAG) of events
corresponding to the causality of events. Root causes
of events appear in such DAGs.

We leverage PC algorithm [3,10] to generate causality
graphs, DAGs of causal relations, from system logs. PC
algorithm investigates causal inferences among nodes
(e.g., events) efficiently based on a set of event time
series. The causal inferences are estimated with the
idea of conditional independence.

PC algorithm consists of four steps.

1. Construct a complete (i.e., fully-connected) undi-
rected graph from nodes (events).
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Figure 1: Processing flow

2. Detect and remove edges without causality by check-
ing conditional independence.

3. Determine edge direction based on V-structure;
this is a rule for deciding directions of three con-
nected nodes.

4. Determine edge direction with orientation rule; this
is a rule for generating DAGs.

It is note that undirected edges can be remained when
enough information for the tests is not available in PC
algorithm.

2.2 System model
We apply PC algorithm to a set of event time series to

generate causality graphs, DAGs with nodes of events
and edges of causalities. In our approach, we define
an event as a set of log messages that have a common
log template that is a skeleton of log messages without
variables (e.g., IPs, interface names).

Figure 1 shows processing flow of our log mining algo-
rithm. First, we extract log templates from the original
log messages to classify log messages into events. We
employed a machine-learning-based log template algo-
rithm [4]. Next, we construct a set of event time series
by each log template per each device (router or switch).
Then, we apply PC algorithm to a set of event time
series to generate causality graphs. For evaluating the
conditional independence of events, we perform a sta-
tistical test called G-square test [7], a natural extension
of Chi-square test for the data. Finally, we remove fre-
quently appeared edges from the DAGs with a threshold
for easily identifying important causality.

Because of the limitation of G-square test, the event
time series are generated as binary data. In addition,
we remove a large number of unrelated event time se-
ries indicating strong periodicity so as to decrease false
positives of coincident. These events are detected with
an auto-correlation coefficient with lag of 1 hour or 24
hours for the events.

3. CASE STUDY
To evaluate the effectiveness of our approach, we use

a set of backbone network logs obtained at a R&E net-
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Figure 2: Ground truth and detected causalities

work in Japan (SINET4 [11]). The nation-wide network
consists of eight core routers, 60 edge routers, and 100
layer-2 switches composed of multiple vendors. The net-
work consists of a large number of network devices, so
we divide the data into eight subsets corresponding to
a sub network with one core router, edge routers and
switches that connected to the core router. We also ana-
lyze one-day-long log data because we target short-term
causality instead of long-term one.

We analyze 15-months consecutive logs composed of
35, 513, 125 log messages. These log messages are clas-
sified into events with 1, 414 log templates. The pre-
processing reduced the number of messages to 1, 483, 455.
Finally, we detect 8, 613 edges from this dataset, and
1, 548 (3.4 edges/day) of them are identified as impor-
tant edges after the post-processing.

These causal edges include some useful knowledge for
troubleshooting. Here, we provide one example; an in-
terface error on a router yields repeated BGP peering
connections. It is not easy for operators to find the
relation of these events, because the events occur over
multiple devices with a certain time lag. Figure 2 shows
(a) a plausible ground truth of this failure by manual
inspection and (b) generated causality graphs with PC
algorithm. Compared to the ground truth, PC algo-
rithm reasonably detects causal relations though some
directions of the edges are different from our intuition.

4. CONCLUDING REMARKS
In this paper, we propose a method to mine causality

of network events from network log messages. The key
idea of the work is leveraged on PC algorithm that re-
constructs causal structures from a set of time series of
events. We demonstrate the effectiveness of the causal
inference algorithm in network syslog analysis by illus-
trating a case study.

We intend to extend the study to evaluate with a
ground truth data (e.g., trouble ticket data). Another
direction of the work is to integrate the timestamp in-
formation in the original logs in order to obtain more
reliable results. Also, we consider to apply the proposed
methodology to other network system such as data cen-
ter or cloud system.
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