
InNetTC: In-Network Traffic Control for Full IP
Sensor-Actuator Networks

Hideya Ochiai
The University of Tokyo/NICT

jo2lxq@hongo.wide.ad.jp

Yuuichi Teranishi
NICT/Osaka University

teranisi@cmc.osaka-u.ac.jp

Hiroshi Esaki
The University of Tokyo

hiroshi@wide.ad.jp

ABSTRACT
The Internet protocol (IP) is now embedded into sensor-
and-actuator nodes these days, rising the new age of full
IP sensor-actuator networks. Though we can make them
available on the Internet space with such embedded TCP/IP
stacks, the appropriate link-layer media for networking them
in facilities are not Ethernet. In stead, it is considered to be
IEEE802.15.4 and RS485, which are known as lossy, unsta-
ble and narrow link media. This sometimes cause fatal prob-
lems especially traffic congestion at the router of connecting
such narrow link in some application senarios. This paper
proposes the architecture and design of In-Network Traffic
Control (InNetTC) scheme that solves this issue. We car-
ried out experiments with the prototype of InNetTC-enabled
router. The result shows that InNetTC achieved 100% suc-
cess of task execution for such application scenarios, indicat-
ing that InNetTC plays an important role for implementing
applications on such full IP sensor-actuator networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Com-
munications; C.2.2 [Network Protocols]: Protocol Archi-
tecture

General Terms
Algorithms, Design, Performance

Keywords
Sensor-Actuator Networks, TCP/IP, Narrow Links, Traffic
Congestion Control

1. INTRODUCTION
With the rise of TCP/IP embedded technologies, more and
more sensors and acutators are getting available on the In-
ternet space. This has enabled the world of Internet of
Things[4, 1, 8, 18] and machine-to-machine (M2M) com-
munications[6, 13, 17, 5]. They are now implemented into
SmartGrid[7], building automation[2, 10], management of

public infrastructure and environmental monitoring. This
is widely known and accepted not only to the academic re-
searchers but also to industries and governments. But, the
nature of M2M communication is very different from the
traditional TCP/IP network. We have to provide TCP/IP
reachability not to our laptops or desktops but to the fa-
cilities (i.e., sensors and actuators deployed on ceilings or
behind walls).

As Ethernet is not an appropriate media to physically net-
work them, more proper media such as IEEE802.15.4 and
RS485 is mainly used in the practical deployment. However,
those media provide narrow-bandwidth in communication
(e.g., 9600bps, 115.2kbps) and this sometimes causes traf-
fic congestion at the router of the narrow-link media, which
leads to critical failures in carrying out monitoring and con-
trolling applications.

This paper proposes an In-Network Traffic Control (InNetTC)
for full IP sensor-actuator networks, which can avoid this
potential traffic congestion at the router. By avoiding such
traffic congestion, this control scheme can also avoid application-
level critical failures.

To deploy IP sensors and actuators in the real world (for
example into a building), as we discussed, Ethernet is not an
appropriate communication media. For example, in the case
where we deploy 10 environmental sensors, light ON/OFF
controllers, switches, motion detectors and electricity power
meters in a room, we have to deploy Ethernet cables from an
Ethernet hub to each sensor or controller one-by-one. This
is unrealistic and will not be widely-accepted even in the
future.

It is widely-considered among the practitioners of this area
that only lossy, unstable, narrow-band communication me-
dia are available today for such environment. IEEE802.15.4
is considered to be a promising wireless media, and to de-
liver IP packets over it, 6LoWPAN[12] and ZigBeeIP[19] is
proposed. Traditionally, system integrators have been us-
ing single twisted-pair physical communication media such
as RS485 and Lonworks[10] because they allow to connect
devices in cascade manner. Cascade cabling is the optimal
form of deployment and accepted by them. Here, IP packets
could be also delivered over such networks[3]. And, because
of the lightweightness of UDP, UDP-based approaches are
attempted on such networks [16].

In this paper, we focus on traffic congestion caused by the
nature of narrow-links. When a remote requester accesses to
multiple (e.g., hundreds of) actuators as a task of an appli-
cation, it generates a lot of IP packets in a very short time
causing traffic congestion and huge delay at the gateway of
the narrow link. This delay sometimes leads to request retry
at the requester, which causes further traffic congestion. We
analyze this problem in section 3 of this paper.

InNetTC allows traffic control by pause request for a specific
network address ranges. When a narrow link is congested,
the router notifies this status to the requester so that it waits
to send IP packets to such network segment. As this traffic
congestion control should be made for a network address
range, end-to-end traffic control scheme is not applicable.
To manage this, InNetTC generates the pause request by
the router: i.e., in network. Thus, we call this in-network
traffic control.

This paper is organized as follows. In the next section, we
address related works. Section 3 provides the model of a full
IP sensor-actuator network. We propose in-network traffic
control scheme in section 4. Section 5 shows our perfor-
mance evalution. Section 6 provides the discussion on the
approaches we have made, and section 7 summarizes this
paper.

2. RELATED WORK
Many protocols for Internet-of-Things and M2M communi-
cations have been proposed and developed at the application
layer. FIAP[15] introduced the concept of Gateway(GW)
for networking sensors and actuators over the Internet. The
GW typically has Ethernet port and works as a TCP/IP
communication edge. It provides access with XML mes-
sages over HTTP at the Internet side. The GW is usu-
ally equipped with non-IP field-buses; e.g., it allows access
to sensors and actuators with Modbus[11] serial communi-
cation protocol over RS485. Web-based systems such as
oBIX[14] and BACnetWS[2] also takes this approach for net-
working them over the Internet.

A full IP sensor-actuator network takes different approaches
for connecting them. It (1) assigns IP addresses to any sen-
sors and actuators even if they are attached on RS485 net-
work or IEEE802.15.4 network, and (2) allows to exchange
IP packets with them. CoAP[16, 9] and ZigBee SEP2.0[19]
take this style for connecting sensors and actuators to the
Internet space with using 6LoWPAN[12] and ZigBeeIP[19]
for the IP layer. Because of the cost and delay of radio com-
munications of IEEE802.15.4, they strongly recommend to
use UDP/IP protocol for accessing the devices.

In-network traffic control has not yet been proposed for those
UDP/IP-based full IP sensor-actuator networks. We en-
counter traffic congestion problem at the router when we
use such narrow link. In this paper, we propose the scheme
of traffic control, and provide basic analysis of it.

3. A FULL IP SENSOR ACUATOR NETWORK
3.1 Definition
This subsection defines a full IP sensor-actuator network we
assume in this paper. The definition described here is a

simplified model – in the typical implementation, we must
specify it in mode detail.

Let d be a device (i.e., a sensor or an actuator). It has an IP
address, to which we can access from the Internet. A device
could have multiple IP addresses in some implementations,
but in this paper, we assume only one address for one device
for simplification.

A sensor (and actuator) has get and set method with which
a requester can get and set data in binary format. We denote
them by d.get() and d.set(value) in this paper(here, value
is data in binary form going to be set into the actuator d).
Sensors actually don’t implement (i.e., empty codes in) set
method because it is a read-only device.

d.get() sends a request UDP datagram to the device, and it
returns a response UDP datagram with data in binary form.
It waits until it gets the response or timeout occurs. More
formally, we define it as follows.

Let p(r,d) be a packet from requester r to sensor d. By
switching r and d (i.e., p(d,r)) we can denote a packet from
sensor d to requester r. And, in a full IP sensor-actuator
network, we define four types of packet: (1) get request (2)
get response (3) set request and (4) set response. We denote
them by getReq, getRes, setReq and setRes respectively.

When the d.get() is invoked, it generates a packet which
type is getReq: i.e., p(r,d).type = getReq. When the sensor
d receives the packet, it generates a response packet, which
type is getRes: i.e., p(d,r).type = getRes. d.get() provides
the value after it has received the packet or TIMEOUT no-
tification if it has not received it in the certain time. This
behaviour can be defined as the following pesudo-code.

pesudo-code of function d.get()

function d.get(){
p=new packet(r,d)
p.type=getReq
send(p)

q=recv(p)
if(q==TIMEOUT){

return TIMEOUT
}
if(q.type==getRes){

return q.content
}
return ERROR

}

In a typical full IP sensor-actuator network, we assume, sen-
sors and actuators are usually not directly connected to the
Ethernet. Instead, it uses other communication media such
as RS485, RS232C and IEEE802.15.4. This feature is not
made explicit in this model yet. It is discussed in the fol-
lowing sub sections.

3.2 Typical Access Algorithm

Let’s consider a power monitoring task of an application.
This task takes a current snapshot of hundreds of power
sensors. A requester sends requests to those hundreds of
sensors and gets values from them. We analyze the algo-
rithm that performs this task.

Let S(r) be the set of sensors, which the requester r wants
to communicate with. To read the current status of all sen-
sors, typically, the requester implements the algorithm be-
low. Here, we denote V a set of key-value pairs, which stores
the result.

V = Φ
Forall d ∈ S(r) in sequentially or in parallel,

max retry=3
do{

value=d.get()
}while(value==TIMEOUT && max retry-->0){
V = V.put(d, value)

EndForall

This algorithm is awared of packet-loss management: i.e.,
retries three times at maximum if it does not receive a re-
ponse packet in a certain time duration.

There are two types of implementations of this algorithm:
i.e., sequential implementation and parallel implementation.
A sequential implementation sends request and receives re-
sponse one-by-one for each sensor incrementally. A parallel
implementation sends requests and receives repsponses at
the same time independenly. There are problems in either
sequential-case or parallel-case.

3.2.1 Problem in Sequential-Case
Let RTT (r, s) be a round trip time between the requester r
and the sensor d.

We denote l the number of packet loss the requester encoun-
ters, and T the duration of the timeout. Then, the total
delay Dtotal becomes

Dtotal =
X

d∈S(r)

RTT (r, d) + l × T (1)

Even if there was no packet loss (i.e., l = 0), RTT (r, d) takes
tens of milliseconds on the narrow link. If the number of
S(r) is large (e.g., hundreds or thousands), it takes seconds
or ten seconds to complete the task.

Sensing itself could be tolerant for this delay in many appli-
cations, but this is critial for some controlling applications
which use set method. If this delay happens when control-
ling ON/OFF lights, people in the room become unconfort-
able.

3.2.2 Problem in Parallel-Case
If it is in parallel, it generates a burst traffic, which might
cause traffic congestion especially at the router for narrow-
link media. To consider the worst situtation, let’s assume
the case that:

∀d ∈ S(r), ip(d) ∈ network(m) (2)

Here, the function ip(d) gives the IP address of the device
d. m is a link media, which corresponding IP address range

Figure 1: Architecture for In-Network Traffic Con-
trol. The InNetTC-enabled router normally just for-
wards IP packets between a narrow link and a fast
link. If the router detects traffic congestion for the
narrow link, the router generates PAUSE packet to
the requester to stop further requests temporarily.

is given by network(m). Thus in this case, to perform the
task, the requester has to communicate with the sensors on
the same communication link. Here, the link is narrow such
as 9600bps.

In this situation, burst traffic generated by the requester,
causes traffic congestion at the router. Then,

1. If the buffer size for outgoing interface is not enough for
holding all of the received request packets, the router
destroys them.

2. The RTT increases linerly with the increase of the
buffer queue length. If the queue becomes too long,
timeout occurs at the requester side, sending retry re-
quest again, which causes further traffic congestion.
And in the worst case, the requester cannot receive
any responses from some sensors and abundan them
after finishing the last retry.

4. IN-NETWORK TRAFFIC CONTROL
To manage these problems, this paper proposes a in-network
traffic control for such a full IP sensor actuator network.

Figure 1 shows the target architecture. The requester sends
UDP datagrams (IP packets) to sensors and actuators, and
they reply to the requester. The router bridges IP packets
between the Internet and the narrow-band link: e.g., RS485
or ZigBeeIP network.

Here, in-network traffic control works as follows:

active sending: The requester actively sends UDP requests
to sensors and actuators in parallel. Usually, it targets
at different IP addresses and carries out in a very short
time.

pause request: The router sends pause request to the re-
quester when it detects traffic congestion. This makes
the requester temporarily stop packet sending (for sen-
sors and actuators on the same narrow link).

Figure 2: Behavior of InNetTC-enabled router and requester. (a) No-Congestion Case. (b) Congestion Case.

pause: The requester stops for a while according to the
pause request received.

4.1 Pause Request
In section 3.1, we described that a full IP sensor-actuator
network has four types of packets: i.e., getReq, getRes,
setReq, setRes. Here, we define a new type of packet called
pause request packet, which we denote by pause. This pause
packet can contain IP address range information and pause
duration. This packet should be generated at the router (not
at the end device) as the response of getReq or setReq.

This is a pesudo-code of generating pause packet at the
router.

Pause Request Generation
queue.push(p(r,s))
if(queue.length > PAUSE THRESHOLD){

p = new packet(s,r)
p.type=pause
p.address range = 203.178.135.0/25
p.duration = queue.length × WEIGHT
forward(p)

}

If the length of the router’s outgoing queue exceeds the
threshold, it triggers pause request packet generation. It
contains the target IP address range and the estimated du-
ration of delay. Here, terminologies used in the algorithm
are:

p(r,s): packets received at the router (destination is a sen-
sor or an actuator on the narrow-link).

queue: outgoing queue for the narrow link.

PAUSE THRESHOLD: a parameter to start sending pause
request.

WEIGHT: weight of time to estimate pause duration from
the length of the queue.

forward(p): forwards packet p in the router (pushes into
an appropriate outgoing queue).

203.178.135.0/25: a sample IP address range

Though p.duration is defined as a linear of queue.length
here, it should be appropriately estimated depending on the
features of the link layer.

The source address of the pause request is the IP address
of the sensor though this packet is generated at the router.
The requester can receive the pause request which source
IP address is the sensor, even if it is actually sent from the
router.

We take this approach because the requester cannot receive
the pause request if the router sends it from the IP address
of the router itself. For the requester, the IP address of the
router is unknown in priori or even not authorized.

4.2 Requester with Pause Algorithm
In InNetTC, the requester controls traffic with the following
algorithm:

pesudo-code of pause algorithm at Requester

function d.get() {
p=new packet(r,d)
p.type=getReq
send(p)

do{
q=recv(p)
if(q==TIMEOUT){

return TIMEOUT
}
if(q.type==getRes){

return q.content
}else if(q.type==pause){

global wait(q.address range, q.duration)
continue

Figure 3: Network configurations of the experiment. Three types of network configurations has been applied
to study the differences of successes, packets exchanges, queue length and duration of task execution.

}
return ERROR

}while(true)
}

global wait(address range, duration) stops carrying out all
the send methods related to address range for duration. It
also extends timeout duration for receival of the response
packet.

Figure 2 shows this action with the time chart.

(a) when the traffic is not congested at the router, the
router just forwards IP packets between the devices
and the requester.

(b) when the traffic is congested at the outgoing queue (for
the narrow-link) of the router, it sends pause request
back to the requester. Then, the requester stop send-
ing further requests temporarily with extending the
timeout duration for the response of the request. For
example, if the timeout is configured as 1 second and it
receives 5 seconds for pause, it waits at least 6 seconds
(1+5 seconds) from the sensor.

5. EVALUATION
We evaluated InNetTC with regard to success rate, number
of packets exchanged, queue length and duration of task ex-
ecution. To evaluate it in these aspects, we implemented an
InNetTC enabled router and carried out experiments with
emulated sensors. The results show that InNetTC achieves
reliable task execution with appropriate execution time by
controlling the traffic with the pause algorithm.

5.1 Experiment Setting
Figure 3 shows the configuration of the experiment we setup
for evaluation. We operated 1000 sensors in the field-networks
by emulation, and the requester got values from those sen-
sors with the InNetTC’s pause algorithm. To emulate the

sensors and the field-networks, we implemented them into
TUN/TAP device(s), and it slowly processed the requested
packets (i.e., getReq packets) and replied to the requester.
The TUN/TAP devices also implemented InNetTC’s pause
algorithm, which generated pause request and sent it back
to the requester based on the length of the outgoing queue
and the PAUSE THRESHOLD parameter setting.

To carry out experiments with different network environ-
ment, we have tested three types of field-network configura-
tions: 1-segment case, 5-segment case and 20-segment case.

1-segment case: We attached one field-network (i.e., one
TUN/TAP device) to the router, and assigned
192.168.0.0/16 to the field network. We deployed 1000
sensors to the single segment as 192.168.[0-4].[10-209]
and the requester created and sent getReq requests to
those sensors.

5-segment case: We attached five field-networks (i.e., five
TUN/TAP devices) to the router, and assigned
192.168.x.0/24 (x=0,...,4) to each field-bus network.
We deployed 1000 sensors to the five segments (200
sensors to each segment) as 192.168.[0-4].[10-209] and
the requester created and sent getReq requests to those
sensors.

20-segment case: We attached twenty field-networks (i.e.,
twenty TUN/TAP devices) to the router, and assigned
192.168.x.0/24 (x=0,...,19) to each field-bus network.
We deployed 1000 sensors to the twenty segments as
192.168.[0-19].[10-59] (50 sensors to each segment) and
the requester created and sent getReq requests to those
sensors.

We changed the PAUSE THREASHOLD parameter from 1
to 3000 and studied (1) success rate, (2) number of pack-
ets sent by the requester, (3) number of packets received
by the requester, (4) max length of outgoing queue of the
router and (5) duration of whole task execution. If the

Figure 4: Protocol implementation of the full
IP sensor-actuator network and InNetTC’s pause
mechanism.

Table 1: Configuration of the experiment

Parameter Value

Process one packet 30[msec]
in the field-network
Duration estimation Number of packets in queue

× 30 [msec]
Timeout 1000 [msec]
Maximum Retry 3
CPU Intel Core 2 Duo U9400 1.4GHz
Memory 4 GByte
OS Linux 2.6.17-2-686

PAUSE THRESHOLD is large enough, it never triggers In-
NetTC’s pause algorithm, so we could evaluate the differ-
ences between not-enabled case (i.e., PAUSE THRESHOLD
is 3000) and strongly-enabled case (i.e., PAUSE THRESHOLD
is 1).

For the experiment, we have implemented the application
layer protocol on the UDP transport protocol as Figure 4.
We assigned numbers for the message type (e.g., getReq for
1, getRes for 3), and for each type, we designed the structure
as the figure. In this experiment, we did not assume packet
loss on the Internet: i.e., between the requester and the
router. So, we executed the requester on the same platform
of the router. Table 1 shows the other parameters used in
the experiment.

5.2 Success Rate, Packets and Queue Length
Figure 5, 6, 7 show the success rate, number of packets sent
and received, and the maximum length of the queue.

In 1-segment case, it has achieved 100% success rate (i.e.,
1000 successes for 1000 sensors) when PAUSE THRESHOLD
was below 400. Especially, when PAUSE THRESHOLD was
less than 200, the requester has sent 1000 (or 1001 in some
cases) getReq packets for 1000 sensors, and received getRes
packets from all of them. It also received pause packets,

Figure 5: 1-segment case: the number of success,
packets exchanged and queue length

Figure 6: 5-segment case: the number of success,
packets exchanged and queue length

which is shown as that the number of packet received is more
than that of sent packets. When PAUSE THRESHOLD was
between 200 and 400, the requester sometimes resent getReq
packets, indicating that the requester sometimes encounter
TIME for their requests because it did not receive pause
request. The maximum length of the queue also increased
suddenly when PAUSE THRESHOLD exceeded 200. When
PAUSE THRESHOLD becomes over 400, it suddenly in-
creased the packets sent, and decreased success rate. This
indicates TIMEOUT happened many times and the requester
made retry, but finally it failed to recover and abundon to
complete the task.

In 5-segment case, the basic feature was the same as 1-
segment case. It has achieved 100% success when the thresh-
old was below 300. Around it increased over 150, it changed
the behavior from pause request-based traffic control to traf-
fic congestion at the router. Over 300, it suddenly increased
the packets sent, and decreased success rate.

In 20-segment case, it has achieved 100% success rate
for any PAUSE THRESHOLD settings. However, the be-
haviour of sending and receiving packets were different de-

Figure 7: 20-segment case: the number of success,
packets exchanged and queue length

pending on the setting. When PAUSE THRESHOLD was
below 10, the requester has sent 1000 getReq packets for
1000 sensors, and received getRes packets from all of them.
Where as, when PAUSE THRESHOLD was over 100, the
requester almost did not receive pause request, and it resent
getReq packets. It got the getRes packets from the sensors
for the first getReq packets and it did succeeded for all of the
sensors. It could complete the task even without InNetTC’s
pause algorithm because each segment had only 50 sensors
and the delay in the queue was not so large (as the graph
indicates) to result in fatal error.

From these results, we can conclude that in InNetTC-enabled
case, it can safely achieve 100% success at least for such net-
work configurations. And, to surely enable InNetTC’s pause
algorithm, PAUSE THRESHOLD should be set as 10.

5.3 Duration of Task Execution
Figure 8 shows the duration for executing the task (only
successful cases are plotted). This graph also shows the
theoretical duration time calculated from the configuration
parameters. The theoretical duration for each case are cal-
culated as follows. From the experiment setting, it takes
30 [msec] for one getReq packet processing. Thus, for 1-
segment case, it takes 30 [sec] (30 [msec] × 1000 sensors).
For 5-segment case, it takes 6.0 [sec] (30[msec] × 200 sensors
for one segment), and for 20-segment case, it takes 1.5 [sec]
(30 [msec] × 50 sensors for one segment).

As is shown in the figure, the duration observed were close
enough to the theoretically estimated time for all the suc-
cessful PAUSE THRESHOLD cases, which means that the
execution time does not rely on the PAUSE THRESHOLD.

6. DISCUSSION
The pause algorithm proposed as the main part of InNetTC
scheme is unique compared to the traditional traffic control
approaches. For the requester to sensors and actuators, the
pause request looks like that it comes from sensors or ac-
tuators because they use the IP address of them. However,
it is actually generated by the router, which is ”in-network”
between the requester and the devices. This type of traffic

Figure 8: Total task execution time for the range of
PAUSE THRESHOLD: comparison with the theo-
retical estimation.

control is different from TCP’s algorithm (because TCP is
end-to-end), and the network operation of bandwidth limi-
tation.

In InNetTC, an intermediate router sends a pause request
to the requester. This pause request actually plays another
important role beyond stopping further requests to the net-
work segment. It notifies that the intermediate router has
certainly received the request. Then, the requester should
consider that the request is certainly approaching to the de-
vices and it should not send retry packets again unless it has
exceeded the notified estimated delay.

With these two features, it achieved application-level task
execution (i.e., getting values from 1000 sensors) success-
fully. The requester waited appropriately without sending
both further unsent packets and further retry packets when
it received pause packets from the router. This resulted in
the success of the task execution.

7. CONCLUSION
In Network Traffic Control (InNetTC) has achieved 100%
success of task execution for three types of configurations in
a full IP sensor-actuator network. When the InNetTC was
off, traffic congestion occurred at the outgoing queue for the
field-bus of the router in some cases, and it caused fatal error
at the application-level task execution. This result indicates
that InNetTC’s pause algorithm plays an important role to
implement applications on full IP sensor-actuator networks.

8. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The internet of

things: A survey. Computer Networks,
54(15):2787–2805, 2010.

[2] Bacnet - a data communication protocol for building
automation and control networks.
http://www.bacnet.org/.

[3] N. W. Bergmann, M. Wallace, and E. Calia. Low cost
prototyping system for sensor networks. In IEEE
ISSNIP, 2010.

[4] A. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby,
and M. Zorzi. Architecture and protocols for the

internet of things: A case study. In IEEE PERCOM
workshop, 2010.

[5] H. Chao, Y. Chen, and J. Wu. Power saving for
machine to machine communications in cellular
networks. In IEEE GLOBECOM Workshop, 2011.

[6] M. Chen, J. Wan, and F. Li. Machine-to-machine
communications: Architectures, standards and
applications. KSII TRANSACTIONS ON INTERNET
AND INFORMATION SYSTEMS, 6(2):480–497, feb
2012.

[7] Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi,
N. Iwasaki, and Y. Nozaki. Towards intelligent
machine-to-machine communications in smart grid.
IEEE Communications Magazine, 49(4):60–65, apr
2011.

[8] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung,
and J.-E. Kim. Snail: an ip-based wireless sensor
network approach to the internet of things. IEEE
Wireless Communications Magazine, 17(6):34–42, dec
2010.

[9] M. Kovatsch, S. Duquennoy, and A. Dunkels. A
low-power coap for contiki. In IEEE MASS, oct 2011.

[10] Lonmark international. http://www.lonmark.org/.

[11] The modbus organization. http://www.modbus.org/.

[12] G. Mulligan. The 6lowpan architecture. In ACM
EmNets workshop, 2007.

[13] D. Niyato, L. Xiao, and P. Wang. Machine-to-machine
communication for home energy management system
in smart grid. IEEE Communications Magazine,
49(4):53–59, apr 2011.

[14] Open building information exchange.
http://www.obix.org/.

[15] H. Ochiai, M. Ishiyama, T. Momose, N. Fujiwara,
K. Ito, H. Inagaki, A. Nakagawa, and H. Esaki. Fiap:
Facility information access protocol for data-centric
building automation systems. In IEEE INFOCOM
M2MCN workshop, 2011.

[16] Z. Shelby, K. Hartke, and C. Bormann. Constrained
application protocol (coap) draft-ietf-core-coap-18, jun
2013.

[17] J. Wan, D. Li, C. Zou, and K. Zhou. M2m
communications for smart city: An event-based
architecture. In IEEE CIT, 2012.

[18] E. Wilde. Putting things to rest. Technical Report
2007-015, UC Berkeley, nov 2007.

[19] Zigbee alliance. http://www.zigbee.org/.

