
Hop-by-Hop Reliable, Parallel Message Propagation
for Intermittently-Connected Mesh Networks

Hideya Ochiai
The University of Tokyo/NICT

jo2lxq@hongo.wide.ad.jp

Masaya Nakayama
The University of Tokyo/NICT
nakayama@nc.u-tokyo.ac.jp

Hiroshi Esaki
The University of Tokyo/NICT

hiroshi@wide.ad.jp

Abstract—Wireless mesh networks suffer from intermittent
connectivity, and thus hop-by-hop reliability and parallel message
propagation, which DTN researches have explored, can be ap-
plied to allow scalable message propagation over such challenged
network environments. We implemented those communication
schemes onto UTMesh – 50-node scale wireless mesh network
testbed, and studied the delivery patterns. On the evaluation
result with UTMesh, we have confirmed (1) that hop-by-hop
reliability scheme achieves scalable message propagation (e.g.,
23 hops), and (2) that message propagation speed increases as
the redundancy-level increases. We have also observed that the
smallest hop count path does not always achieve the fastest
message delivery. This was probably because longer distant
links were unstable and message paths over short distant links
provided faster propagation.

Index Terms—Delay Tolerant Networks, Mobile Ad Hoc Net-
works, Intermittent Connectivity, Testbed

I. INTRODUCTION

Wireless mesh networks frequently suffer from intermittent
connectivity even if the network nodes do not move. Intermit-
tent connectivity has been pointed out mostly in the context of
mobile cases[13][2][12], and considered as an application area
of delay tolerant networking (DTN)[3][5] for such challenged
network environments. However, according to the study with
real equipments, even static neighbors frequently disappear
and become disconnected.

This raises intermittently-connected mesh networks (IC-
MeN), indicating that this is also an application area of DTN.
For this reason, the traditional communication schemes, such
as (1) best effort forwarding with end-to-end reliability and
(2) message propagation on a single path, sometimes do not
work well[25]. Instead, we should take the approaches that
DTN researches have explored; i.e., (1) store-and-forward with
hop-by-hop reliability and (2) parallel message propagation.
We must node that ICMeN is different from intermittently-
connected mobile networks (ICMN)[8][10][17][23] because
nodes are physically fixed.

In this work, we implemented such DTN communication
schemes into UTMesh (Fig. 1) and studied how they enabled
scalable message propagation. UTMesh is our real world IC-
MeN: 50-node scale wireless mesh network. We demonstrate
that links among static nodes are highly dynamic and that we
have to take those schemes in order to increase the scalability
in hop counts and the propagation speed.

The traditional approach [4][19] for wireless mesh network-
ing was mostly based on the Internet design principles: (1) best

Fig. 1. UTMesh overview: 50 wireless nodes (5 lines × 10 rows) gathered
at the laboratory, in Eng. Bldg. 2 at the University of Tokyo.

effort forwarding with end-to-end reliability, and (2) single
message path. However, the target environment became quite
different, which is characterized by intermittent-connectivity
and unintentional packet loss. Packet loss sharply kills the
traffic and sometimes causes delivery failure under best-effort
communication. Intermittent-connectivity frequently changes
the physical network topology and the best path soon becomes
obsolete or unavailable even during one message delivery. For
these reasons, they do not have scalability in hop counts[25].

We analyzed the features of wireless links using UTMesh.
The result shows that the mesh network topology is certainly
highly dynamic – almost always changing (see Section III).
This supports the hypothesis that traditional approaches do
not work well in such wireless networks.

The researches of DTNs have recently shown that hop-by-
hop reliability and parallel delivery (i.e., redundant-delivery
over multiple paths) greatly improve the message propagation
speed as well as the scalability with regard to the hop
count. However, those studies were made mostly in mobile
cases[22][18][11]. Hop-by-hop reliable transfer is made by
assuring that the message has been certainly transferred to
the nexthop node. In this scheme, it repeatedly retries this
forwarding process if the receiver could not get the message
in the previous transmission. This scheme certainly propagates
messages to the nexthop and achieves the scalability in hop
counts. By making branch paths at the intermediate nodes



Fig. 2. (a) The experiment setting to analyze intermittent links between wireless nodes deployed in ad hoc manner. (b) Summarized network topology;
bolder link indicates higher link availability.

during the delivery, DTN performs message propagation in
parallel.

We applied those communication schemes to UTMesh and
studied the features of message propagation. We have used
potential-based entropy adaptive routing (PEAR)[18] as an
implementation of DTNs.

We consider that wireless mesh networking enable rapid and
costless deployment of smart meters into green buildings[29].
In such applications, the network must autonomously route
messages under the given deployment configurations. This
work itself does not focus on the method of node
placement[6][20], or high bit rate application[15], or reduc-
tion of power consumption[21]. Sensors at power distribution
boards, lights and HVAC systems actually do not suffer from
power constraints.

The rest of this paper is organized as follows. Section II
addresses the related works. In section III, we provide our
analysis of wireless links on UTMesh. Section IV describes
PEAR focusing on the behavior in static cases. Section V
provides our evaluation work. In section VI, we provide the
discussions on the results. Finally, we conclude this paper in
section VII.

II. RELATED WORK

Link-level measurement on mesh networks was well studied
by Daniel et. al.[1] with Roofnet: wireless mesh network-
ing testbed (38 nodes). They concluded ”there is no clear
distinction between working and non-working links”. As for
routing on mesh networks, Tschudin et. al.[24][25] discussed
the existence of ”Ad Hoc Horizon” – ”at 2-3 hops and 10-
20 nodes where the benefit from multihop ad hoc networking
virtually vanishes” from the experiences on APE testbed (37
nodes)[14]. The researches on our UTMesh (51 nodes) have
also verified their conclusions.

The benefits of hop-by-hop transfer are well summarized
by Heimlicher et. al. [9] (also discussed in many litera-
tures). Related to this, delay or disruption tolerant networking
(DTN)[3][5], originally proposed for deep space commu-
nication, has been identified as an applicable scheme for

intermittently-connected networks. Message routing on DTNs
(or intermittently-connected networks) were studied mostly for
mobile cases[22][18][13][2] in the last 5 years, and now it is
widely acknowledged that multipath delivery improves mes-
sage propagation speed and delivery probability. We applied
the communication scheme even to static cases in this paper.

There has been several studies on multipath or redundant-
path packet propagation for mobile ad hoc networks (MANET)
for a decade. Stephen et. al.[16] discussed the fault tolerance
of multipath routing in MANETs. Tsirigos et. al.[26] provided
an analytical work on the benefits obtained from multipath
schemes. However, these works seem to assume best-effort
forwarding and end-to-end reliability. In our survey, most of
the studies are not tested with real implementations.

The system model of PEAR, which we describe in this
paper, was defined by our previous literature[18]. However,
we described in the context of mobile cases. In this paper,
we describe PEAR in static cases and provide our testbed
experiments on UTMesh.

III. INTERMITTENTLY-CONNECTED MESH NETWORKS

The definition of intermittently-connected mesh networks
(ICMeN) is as follows. An ICMeN is composed of stable
wireless nodes, however, the links among them are disruptive
and unreliable; i.e., they sometimes become connected but also
frequently become disconnected. According to our testbed ex-
periments, the typical wireless mesh networks (i.e., composed
of 802.11b ad hoc mode) falls into this category.

In this section, we first describe our experiment settings,
then show the results. We deployed 50 wireless nodes in our
university campus and studied the features of the links. The
results strongly indicate that the network topology frequently
changes even if nodes are static.

A. Experiment Setting

We deployed 50 nodes in Hongo campus at the Univer-
sity of Tokyo as Fig. 2 (a). Each node was working with
Armadillo-220, a Linux1 embedded computer with an USB

1Kernel: linux-2.6.12.3-a9-15



Fig. 3. The distribution of link availability – only 35% was tightly connected.

IEEE802.11b/g/n module2. The IEEE802.11b/g/n module was
working in ad hoc mode (of 11b) at channel 1; all the nodes
had the same frequency.

The embedded computer was powered by enough batteries
(actually, we do not focus on the power usage – it just equipped
enough power for the experiment). We packed all of them into
a plastic box. Fig. 1 is the overview of the testbed (before
deploying into the campus).

In order to analyze the features of wireless links (e.g.,
availability, contact time, inter contact time), we installed
the software that made radio range advertisement in every
10 second. By recording the advertisements received from
neighbors at each node, we performed this investigation. The
experiment was carried out for 6 hours.

B. Link Availability and Network Topology

Fig. 2 (b) is the summarized network topology. The boldness
of links indicates the availability between the nodes, which is
specified by,

A(a, b) =
1
2

(
Ra←b

Sb
+

Rb←a

Sa

)
(1)

Here, A(a, b) denotes the availability of links between a
and b. Ra←b is the received advertisement from b at a, Sb is
the total advertisement sent by b during the experiment.

From this result, we can see that the availability of links is
apparently heterogeneous. Some links seem tightly connected
but others are lightly connected. Fig. 3 is the distribution of the
availability per link. Only 35% of the links were tightly (more
than 90%) connected, and others were disruptive. Actually,
90% availability is not enough if the two nodes need to make
session-based communication (e.g., TCP). Furthermore, if the
hop count between two nodes increases, the packet loss ratio
increases suddenly. This fact indicates that the principle of
best-effort and end-to-end reliability cannot be applied to such
networks.

2GW-USMicroN, Planex Communications Inc.

Fig. 4. Distributions of contact time at 1 ↔ 2 (91% availability), 30 ↔
31(55%) and 30 ↔ 32(3%).

Fig. 5. Distributions of inter contact time at 1 ↔ 2 (91% availability), 30
↔ 31(55%) and 30 ↔ 32(3%).

C. Contact Time and Inter Contact Time

We also looked into the detail of each link, and analyzed
the distributions of contact time and inter contact time. Contact
time, in this paper, is the duration that a node received adver-
tisements from the other node without losses. If it received five
succeeding advertisements but not the sixth advertisement, the
contact time is 50 seconds. Inter contact time is the interval
between the received advertisements. For example, if it could
not receive three succeeding advertisements before receiving
the fourth advertisement, the inter contact time is 40 seconds.

Fig. 4 and Fig. 5 shows the distribution of contact time and
inter contact time for the links at 1 ↔ 2, 30 ↔ 31, and 30 ↔
32. They respectively had 91%, 55% and 3% availability.

Links become disconnected at 23%(1↔2), 76%(30↔31)
and 100%(30↔32) in 60 seconds. They reconnected again at
100%(1↔2), 98.9%(30↔31) and 59.6%(30↔32) in the next
60 seconds after disconnected.

D. Summary

From these results, we concluded that (1) the connectivity
of links changed very frequently even nodes was static, that
(2) more than half of them were such links and that (3) such
links often have longer distance.



The shortest path, which gives the smallest hop count to the
destination, would not be the best path regarding to delivery
latency. In order to get the smallest hop count, each hop must
reach long distance. However the links of longer distance
frequently become disconnected. Instead, shorter links are
available. Propagating messages on shorter links sometimes
work faster. The results of our evaluation (Section V) clearly
have shown this.

This experiment was made with small advertisement traffic
at 10[sec] sampling rate. Burst traffic may cause larger packet
losses.

IV. POTENTIAL-BASED ENTROPY ADAPTIVE ROUTING

In order to implement hop-by-hop reliable communication
and parallel message propagation, we use potential-based
entropy adaptive routing (PEAR) in this paper. PEAR inherits
the concept of DTNs such as store-carry-and-forward and
multipath message propagation. Actually, we have already
proposed the definition of PEAR model in [18], but in the
context of mobile nodes. Thus, in this paper, we focus on the
description of behavior at static cases.

A. Terminology

Let N be a set of network nodes. We denote the neighbor
nodes of node n ∈ N by nbr(n). Here, we define nbr(n)
contains n itself: i.e., n ∈ nbr(n). In the following discus-
sion, we setup a model that links are bi-directional. Thus,
∀k, n (k ∈ nbr(n) → n ∈ nbr(k)).

We define potential of n ∈ N for each destination d ∈ N
at time t by V d(n, t). V d(n, t) gives a scalar value, which
tells a heuristic proximity to d from n. For example, if
V d(n1, t0) is smaller than V d(n2, t0), n1 is probably closer to
the destination d. PEAR develops potential values dynamically
according to the node contacts (section IV.C) and uses them
for message forwarding decision (section IV.B).

B. Forwarding Scheme

We define two forwarding schemes for PEAR: best candi-
date selection (BCS) and multiple candidate selection (MCS).
BCS chooses the most possible nodes and MCS chooses the
better nodes among the contacted neighbors for the nexthop.
More formally, we define them as,

Best Candidate Selection (BCS):

F d
max(n, t) = max

nbr(n)
{V d(n, t) − V d(k, t)} (2)

nexthopd
BCS(n, t) = {k|k ∈ nbr(n) ∧

F d
max(n, t) = V d(n, t) − V d(k, t)

> α} (3)

Multiple Candidate Selection (MCS):

nexthopd
MCS(n, t) =

{k|k ∈ nbr(n) ∧ V d(n, t) − V d(k, t) > β} (4)

Here, α and β are positive constants that give threashold of
forwarding.

PEAR implements hop-by-hop reliability scheme, and takes
copy-based approach in transferring messages. This makes
parallel delivery and achieves faster message propagation.

After the nexthop candidates are determined, the node asks
whether the nexthop already has the sending-message or not.
If the nexthop has no knowledge about the message, the
node forwards the message to it. If the nexthop already has
the message, the node does not forward. Actually, the node
makes copies of the message, instead of just forwarding.
Traditional ad hoc network removed the message after the
forwarding process. However, PEAR copies it to the nex-
thop and does not remove at the forwarding source. This
forwarding strategy, which is widely acknowledged in DTN
research community[27][22][13], certainly improves delivery
performance. This scheme allows to make branch paths from
the intermediate nodes and to propagate them in parallel. Even
if a certain path became wrong, it finds another path and
delivers the messages (see Section IV.E).

The forwarding scheme of PEAR also implements message
deletion mechanism for those remained in the network. For
more detail, see our previous paper[18].

C. Potential Field Construction

PEAR autonomously develops potential values, and uses
them at message forwarding decision. Here, we provide the
algorithm for potential-field construction.

PEAR nodes periodically exchange their potential vector
(i.e., {V d(n, t)|d ∈ N}) among their neighbors by radio-range
multicast. And, each node computes potential values in the
following rule.

V d(n, t + 1) = V d(n, t)
+ D min

k∈nbr(n)
{V d(k, t) − V d(n, t)}

+ ρ (5)
V d(d, t) = 0 (6)

0 < ρ < D , 0 < D < 1 (7)

The potential of destination is always tied to 0 (Eqn. 6).
Other potential values dynamically change depending on node-
contact patterns. A potential normally grows by ρ at every
timeslot, but decreases when the node has encountered a node
of smaller potential value (Eqn. 5). D is a diffusion parameter.
If it becomes larger, potential values decrease faster when
it has encountered lower nodes, and dissemination of low-
potential information becomes faster.

At the very early stage of potential-field construction, a
node does not know all the nodes in the network over
intermittent connectivity. In this phase, the node does not make
any potential computation for such unknown destinations.
However, the potential values associated to such destinations
disseminate over the intermittent connectivity. First, a node
opportunistically encounters another node and exchanges its



Fig. 6. Potential field construction (in theory and in reality); potential-field converges into (b) if the given network topology (a) does not change. However,
links are intermittent and the topology dynamically changes. Potential-field follows this change as (c). (c) is a real trace on UTMesh.

potential vector with each other. Then, it finds that some
destinations are not in the local potential vector. So, it adds
to the vector and starts computation for the new destinations.
The initial potential should be the first potential received. In
this way, every node autonomously learns what nodes exists
in the network even they are intermittently connected.

D. Potential Field in Stable Scenarios

If the network is stable and connected, a potential-field
converges into the same pattern that distance-vector protocols
develop; it increases linearly hop-by-hop from the destination.
More formally, if the network is stable (⇔ {nbr(n)|n ∈ N}
are static) and connected, PEAR gets,

∀n ∈ N, lim
t→+∞

V d(n, t) =
ρ

D
h(d, n) (8)

Here, h(d, n) is the minimum hop count from node d to n.
Thus, it has an aspect of distance-vector routing.

Fig. 6 (b) shows the developed potential field for destination
node n5 by PEAR. In this example, the potential value
increments as the hop count increases for n5. Theoretically, it
converges as Eqn. 8 presents, however in reality, because links
are intermittently-connected as we have noted, the potential
values change all the time as Fig.6 (c). Here, (c) is the real
trace obtained at UTMesh.

E. Parallel Delivery in ICMeN

The same messages propagate in parallel in ICMeN whether
it is BCS or MCS. In BCS case, each node chooses only
one nexthop at one time. However, as we mentioned, because
potential-field changes according to the status of links, the best
nexthop candidate also changes in the next time slot. Thus, the
node also copies messages to the new nexthop candidate. In
this way, it makes multiple paths in message propagation. In
MCS case, each node chooses several nexthops at one time,
which itself makes multiple path without waiting the change
of potential-field.

The major difference of BCS and MCS is the redundancy
level in message propagation. MCS apparently creates larger
number of delivery paths, indicating that small number of link
failure does not cause fatal delay.

Choosing the best single path from the source to the
destination is very difficult or impossible in ICMeN, because
(1) the best path soon becomes obsolete or unavailable during
the delivery of messages and (2) each message has its own best
path. PEAR enables to choose the best path for each message
by propagating itself in parallel.

V. EVALUATION

We carried out experiments for two deployment cases
(campus case and building case) and evaluated the features
such as delivery latency and buffer usages. We compared the
performance of BCS and MCS in both deployment configura-
tions. In this section, we describe the experiment settings, the
profile of the experimental networks and the results of delivery
latency, message delivery patterns and buffer usages.

A. Experiment Setting

Fig. 7 shows the deployment configuration in Hongo cam-
pus and Eng. Bldg. 2 in the University of Tokyo(UT). We
used 51 nodes (1, . . . , 50, 99) in the experiments. First, all the
nodes were gathered at Esaki laboratory at the 10th floor in
Eng. Bldg. 2. We powered on between 5 and 10 nodes at the
same time and shipped to the specified location. We repeated
this until all the nodes were deployed. The wireless interfaces
were deployed about 10cm high from the ground (outside) or
from the floor (inside). We here configured node 1 to send
one 100-byte message to node 99 at every 5 second. In this
setting, the ICMeN delivers the messages from 1 to 99 by
PEAR routing algorithm.

Before the deployment, we installed two programs into these
nodes – the one is for BCS operation and the other is for MCS,
and the running mode was automatically changed at specified
times. In the campus case, nodes were operated by BCS for
the first 3.5 hours, then swapped by MCS and operated for



Fig. 7. Deployment configuration; we deployed 51 nodes in Hongo campus (campus case) and Eng. Bldg. 2 (building case) in the University of Tokyo.

Fig. 8. Topology, link availability and average degree of the deployed networks. Bolder link has larger availability. The distribution of the link availability
were almost the same.

the last 3.5 hours. In the building case, the first 6 hours were
operated by BCS and the last 6 hours were by MCS. Here,
we setup 5 minute break between the two modes.

Finally, we collected the deployed nodes into the laboratory,
and retrieved the working logs for analysis.

All the wireless interfaces were operated in ad hoc mode
of 802.11b at the same frequency: 2.412GHz (channel 1). The
parameters of PEAR were as follows.

• POTENTIAL TTL: 30[sec]
• MESSAGE TTL: 3600[sec]
• DISSEMINATION TTL: 300[sec]
• D: 0.2
• ρ: 0.02
• α, β: 0
We implemented PEAR to achieve small tasks at 10-second

step. For example, it exchanged potential values in every 10
second; it generated the next potential-field every 10 second.
It also tried re-transmissions for stored messages at every
10 second. Thus, when it failed forwarding messages, the

messages must wait there for the next re-transmission, which
caused 10 second delay.

B. Features of the Deployed Networks

Fig. 8 is the summarized topology and the distribution
of link availability of the deployed networks. The boldness
of links are provided by Eqn. 1. As it becomes bolder, the
availability increases. The distribution of the availability was
almost the same between the two configurations. About one
half of the links were tightly (more than 90%) connected. The
average degree (the number of links at an average node) was
8.1 (campus case) and 12.5 (building case).

C. Experiment Results

Fig. 9 provides the summary of the evaluation results. The
results indicate that hop-by-hop reliability scheme achieves
scalable message propagation (e.g., 23 hops), that message
propagation speed increases as the redundancy-level increases.



Fig. 9. The distributions of (a) delivery latency, (b) hop and copy count, (c) entry and buffer size for campus case and building case.

• Campus Case: PEAR achieved 26% (BCS) and 29%
(MCS) delivery in the given message life time: i.e.,
3600[sec]. The average hop count from 1 to 99 was 21.2
(BCS) and 22.3 (MCS). Messages were copied 30.4 times
(BCS) and 36.9 times (MCS) in average. 96 entries (BCS)
and 194 entries (MCS) were used at average nodes for
replica management and message deletion control. 36.4
buffers (BCS) and 51.5 buffers (MCS) were occupied by
messages at average nodes.

• Building Case: PEAR achieved 100% delivery probabil-
ity for both BCS and MCS. The average delivery latency
was 238[sec] (BCS) and 46.6[sec] (MCS). The average
hop count from 1 to 99 was 7.08 (BCS) and 7.72 (MCS).
Messages were copied 14.5 times (BCS) and 27.7 times
(MCS) in average. 197 entries (BCS) and 408 entries
(MCS) were used at average nodes. 17.3 buffers (BCS)
and 15.4 buffers (MCS) were occupied by messages at
average nodes.

Delivery probability is the ratio of the arrived messages
during their life time to the sent messages. Average delivery
latency is the average time of message travel from the source
to the destination. Because the delivery latency is given for
each message, we cannot calculate the average if any messages
disappear before reaching the destination. Thus, we could
present the average delivery latency only for the building case,
which has achieved 100% delivery.

Average hop count is the average of message hop counts
from the source to the destination. Average copy count is the
average of copies for each message made in the network during
delivery.

Entry is used to maintain the state of the message. Thus,
when a new message arrives at node n, the message consumes
one entry at n. The entry remains there until the message
expires. Average entry usage shows how many entries are used

in the average node, and average buffer usage shows how many
message bodies are stored in the average node. Buffer usage
is usually smaller than entry usage because PEAR deletion
algorithm removes the message body but entry remains there
until TTL expires to delete messages.

1) Delivery Latency: Fig. 9 (a) shows the distribution of
message delivery latency.

In the campus case, the fastest message was delivered in
600[sec] (BCS) and in 300[sec] (MCS). 10% of the messages
were delivered in 2200[sec] (BCS) and in 1600[sec] (MCS).
20% of the messages in 3000[sec] (BCS) and 2400[sec](MCS).
They delivered 26% (BCS) and 29% (MCS) of the messages
during the given TTL.

In the building case, BCS delivered 4% of the messages
in between 0[sec] – 100[sec], whereas MCS achieved 65%
for the same latency. 99% of the messages were delivered in
700[sec] (BCS) and 300[sec] (MCS).

Apparently, MCS achieved faster message propagation than
BCS did. Especially, in building case, the average performance
of MCS was 5.1 times faster (5.1=238[sec]/46.6[sec]).

2) Message Delivery Pattern (Hop and Copy Count):
Fig. 10 shows the typical message delivery patterns in each
scenario (we picked them up from thousands of delivery
pattern samples). In campus case, 21.2 hops and 30 copies
were average for BCS, and 22.3 hops and 36 copies were
for MCS. In building case, 7.08 hops and 14.5 copies were
for BCS, and 7.72 hops and 27.7 copies were for MCS. Fig.
9 (b) shows the distributions of hop count and copy count.
Because messages took different delivery paths, each message
gave different hop count and copy count.

Hop-by-hop reliability certainly improved the scalability in
hop count. (According to [25], MANET could make only
several hops for packet propagation).

MCS made larger number of copies especially in building



Fig. 10. Message delivery pattern examples from source 1 to destination
99. PEAR achieved scalable message propagation in hop count. MCS made
larger number of replicas, found faster delivery path, and took bigger hop
count than BCS.

case: i.e., about 1.9 times. Interestingly, MCS also took slightly
larger hop counts than BCS did. This indicates that faster
delivery path is not always the shortest path. Longer path (i.e.,
larger hop count) sometimes increases message propagation
speed.

3) Entry and Buffer Usage: Fig. 9 (c) shows the distribu-
tions of entry and buffer usages. The maximum limit of the
usages is 720[count] – given by the message generation traffic
(0.2[count/sec]) and its life time (3600[sec]).

In both campus and building cases, most of the nodes had
small entry and buffer usages at most of the time. In building
case, buffer sizes (BCS and MCS) were much smaller than
entry sizes. This indicates most of the message body was
removed from the network after the delivery by PEAR deletion
mechanism. However, in campus case, although buffer sizes
were smaller than entry sizes in total, they were almost the
same at large spectrum. This indicates that farer nodes from the

destination removed fewer message bodies because they had
to remain in the network until they reached the destination.

VI. DISCUSSION

The reason why message delivery took large time (e.g.,
100[sec], 1000[sec]) originates in PEAR implementation.
PEAR was originally developed for delay tolerant networking,
and thus it tried re-transmission in every 10 second. If the
message could not be transferred in one transmission (this
frequently happens probably because of [1]), it had to wait
for the next trial. Because the hop count is large, the total
delivery took plenty of time. We would be able to improve
the re-transmission scheme for faster propagation, which is
our future work.

The experiments have clearly shown that MCS, which
gives larger redundancy, delivered messages to the destination
especially when the network was densely configured (building
case). Here, MCS took larger hop count than BCS did. This
indicates that shorter distant links propagate messages faster
though it must take larger number of hops.

The experiments were made on IEEE802.11b links (in
ad hoc mode). Though the wireless interface itself supports
IEEE802.11g and 11n, they do not work in ad hoc mode.
The main contribution of this research, we consider, is the
implementation report of hop-by-hop reliability and parallel
propagation schemes for such unstable networks. Study on
other wireless links (11g, 11n and 11s[7][28]) is open research
items.

VII. CONCLUSION

In this paper, we have raised intermittently-connected mesh
networks(ICMeN) on the basis that links of typical wireless
mesh networks (i.e., composed of 802.11b ad hoc mode) are
disruptive and unreliable. The connectivity of links, and the
whole network topology, frequently changes, and this makes
scalable message propagation in traditional communication
schemes difficult.

We proposed to apply hop-by-hop reliable and parallel
message propagation, which DTN researches have explored,
to such ICMeN. We implemented them to UTMesh – 50 node
scale wireless mesh testbed, and studied the delivery patterns.

On the evaluation result with UTMesh, we have confirmed
(1) that hop-by-hop reliability achieves scalable message prop-
agation (e.g., 23 hops), and (2) that message propagation
speed increases as the redundancy-level increases. We have
also observed that the smallest hop count path does not
always achieve the fastest message delivery. This was probably
because longer distant links were unstable and message paths
over short distant links provided faster propagation.

REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level
measurement from an 802.11b mesh network. In ACM SIGCOMM,
2004.

[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani. DTN routing
as a resource allocation problem. In ACM SIGCOMM, 2007.



[3] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,
and H. Weiss. Delay-tolerant networking: an approach to interplanetary
internet. IEEE Communications Magazine, 41(6):128–136, jun 2003.

[4] T. Clausen and P. Jacquet. RFC3626: optimized link state routing
protocol (OLSR), oct 2003.

[5] K. Fall. A delay-tolerant network architecture for challenged internets.
In ACM SIGCOMM, 2003.

[6] A. Franklin and C. Murthy. Node placement algorithm for deployment
of two-tier wireless mesh networks. In IEEE Globecom, 2007.

[7] R. G. Garroppo, S. Giordano, D. Iacono, and L. Tavanti. On the
development of a IEEE 802.11s mesh point prototype. In ACM
TridentCom, 2008.

[8] J. Ghosh, H. Q. Ngo, and C. Qiao. Mobility profile based routing within
intermittently connected mobile ad hoc networks (ICMAN). In ACM
IWCMC, 2006.

[9] S. Heimlicher and B. Plattner. Reliable transport in multihop wireless
mesh networks. In Guide to wireless mesh networks, pages 231–254.
Springer, 2009.

[10] A. Jindai and K. Psounis. Fundamental mobility properties for realistic
performance analysis of intermittently connected mobile networks. In
IEEE Percom, 2007.

[11] A. Kinalis and S. Nikoletseas. Adaptive redundancy for data propagation
exploiting dynamic sensory mobility. In ACM MSWiM, 2008.

[12] F. Laurent and G.-C. Felipe. Using delay tolerant networks for car2car
communications. In IEEE Inductrial Electronics, 2007.

[13] A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing in
intermittently connected networks. LNCS, 3126:239–254, sep 2004.

[14] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tschudim.
A large-scale testbed for reproducible ad hoc protocol evaluations. In
IEEE WCNC, 2002.

[15] S. Mao, S. Lin, S. S. Panwar, Y. Wang, and E. Celebi. Video transport
over ad hoc networks: multistream coding with multipath transport.
IEEE Journal on Selected Areas in Communications, 21, dec 2003.

[16] S. Mueller, R. P. Tsang, and D. Ghosal. Multipath routing in mobile
ad hoc networks: Issues and challenges. Performance Tools and
Applications to Networked Systems, pages 209–234, 2004.

[17] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive routing for intermit-
tently connected mobile ad hoc networks. In IEEE WoWMoM, 2005.

[18] H. Ochiai and H. Esaki. Mobility entropy and message routing in
community-structured delay tolerant networks. In ACM AINTEC, pages
93–102, 2008.

[19] C. Perkins, E. Belding-Royer, and S. Das. RFC3561: ad hoc on-demand
distance vector (AODV) routing, jul 2003.

[20] J. Robinson, M. Singh, R. Swaminathan, and E. Knightly. Deploying
mesh nodes under non-uniform propagation. In IEEE INFOCOM, 2010.

[21] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-
organization of a wireless sensor network. IEEE Personal Communica-
tions, 7, oct 2000.

[22] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient routing
in intermittently connected mobile networks: the multiple-copy case.
IEEE/ACM Transactions on Networking, 16(1):77–90, feb 2008.

[23] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient routing
in intermittently connected mobile networks: the single-copy case.
IEEE/ACM Transactions on Networking, 16(1):63–76, feb 2008.

[24] C. Tschudin, P. Gunningberg, H. Lundgren, and E. Nordstrom. Lessons
from experimental manet research. Elsevier Ad Hoc Networks, pages
221–233, 2005.

[25] C. Tschudin and E. Osipov. Estimating the ad hoc horizon for TCP over
IEEE 802.11 networks. In Med-Hoc-Net, 2004.

[26] A. Tsirigos and Z. J. Haas. Multipath routing in the presence of frequent
topology changes. IEEE Communications Magazine, 39:132–138, nov
2001.

[27] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad
hoc networks. Technical report, Duke University, 2000.

[28] T. Vanhatupa, M. Hannikainen, and T. D. Hamalainen. Performance
model for IEEE 802.11s wireless mesh network deployment design.
Journal of Parallel and Distributed Computing, 68:291–305, mar 2008.

[29] K. Yoshida and H. Esaki. Energy saving with ICT: Green university of
tokyo project. In EcoDesign, 2009.


