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SUMMARY

We investigate an automatic and dynamic parameter tuning of a statistical method for detecting anomalies in
network traffic (this tuning is referred to as parameter learning) towards real-time detection. The main idea behind
the dynamic tuning is to predict an appropriate parameter for upcoming traffic by considering the detection results
of past t traces of traffic. The t is referred to as the learning period, and we discuss in particular the appropriate
value of t. This automatic tuning scheme is applied to parameter setting of an anomaly detection method based
on Sketch and the multi-scale gamma model, which is an unsupervised method and does not need predefined data.
We analyze the tuning scheme with real traffic traces measured on a trans-Pacific link over 9 years (15 min from
14:00 Japan Standard Time every day, and 24 consecutive hours for some dates on the same link). The detection
results with parameter prediction are compared to those with ideal parameters that maximize the detection
performance for upcoming traffic. We also analyze predictability of the ideal parameter considering the past
changes in it. The main findings of this work are as follows: (1) the ideal parameter fluctuates day by day; (2)
parameter learning with a longer t is affected by significant events included in the period, and the appropriate t
is about three traces (days) for everyday 15 min traces and around 1.5 h for 24 h traces; (3) the degradation in
detection performance caused by introducing parameter learning is 17% with t = 3 for everyday 15 min traces; (4)
the changes in the ideal parameter have no periodic correlation, and can be modeled as a random process followed
by a normal distribution. We show that one cannot consistently use a fixed parameter in statistics-based algorithms
to detect anomalies in practice. Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

As the Internet has become an infrastructure essential to human life, all users are exposed to
considerable threats such as those posed by viruses and worms, and distributed denial-of-service
attacks. These menaces must be detected in real time so that secure networks can be maintained, and
numerous methods of detecting anomalies in network have been proposed thus far. These anomaly
detectors are generally classified into two categories; the first is a signature-based approach, which finds
specific fingerprints of packet payloads predefined in their database [1], and the second is a statistics-
based approach, which defines network anomalies as deviations from referential statistical behavior
[2–11]. These statistical models are especially needed for detecting unknown anomalies, e.g. outbreaks
of new worms (zero-day attacks), which are currently common in the Internet. Classical methods find
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abrupt changes in traffic volume [2–6], and recent detectors have tried to uncover hidden anomalies
adopting machine learning or statistical models [7,8,10].

Even though a great deal of attention has been paid to statistical anomaly detection methods, one
crucial problem not fully discussed is how parameters should be set with these methods [12,13].
Arbitrarily determined parameters may detect significant (e.g. high-volume) anomalous traffic, but they
will miss minor (hidden) anomalies. Thus the parameter setting of statistical models directly affects the
performance (i.e. accuracy) of anomaly detection. In addition, it is generally difficult to choose
appropriate parameters a priori, because the macroscopic dynamics of anomalies in Internet traffic vary
greatly depending on the temporal and spatial features to be measured. The changes in anomalous
behavior pose difficulties in learning-based detectors [7,8,10], which defines anomalies by analyzing
past traffic behavior to extract low-intensity anomalies. Even though some earlier studies have
addressed how to set parameters [5,14] on the fly, this parameter setting is just a conversion from a
confidence value (e.g. 99% or 95%) to a threshold. Hence this tuning does not consider the dynamics
of anomalies or the efficiency of anomaly detection, and even if we used such a parameter setting based
on the confidence level, we would need to find a better confidence level leading to better detection,
which is quantified by ground truth. Consequently, there has been demand for an automatic tuning
scheme that dynamically follows macroscopic trends in anomalous traffic, in order to realize accurate
and real-time anomaly detection. Furthermore, automatic and dynamic parameter tuning is essential
not only for detecting anomalies in the real world but also for comparing anomaly detectors. To ensure
a fair comparison of detection performance, the parameters of all methods must be optimized in
addition to using the same dataset. One reasonable approach toward this demand is to predict the
behavior of anomalies in upcoming traffic by considering their trends in the past, in order to
automatically tune anomaly detectors. The tuning scheme will train anomaly detectors to uncover
high-abnormality traffic (e.g. scanning or flooding attack) and provide network operators with
detection reports including high-priority anomalies so that they can efficiently decide how to deal with
the detected traffic according to their management policy. This tuning is different from learning-based
anomaly detectors, because they still have to set thresholds to find anomalies after defining referential
behavior computed from learning with traffic traces. Also, automatic parameter tuning scheme can be
applied to many kinds of anomaly detectors.

This paper discusses automatic and dynamic parameter tuning, referred to as parameter learning. To
the best of our knowledge, this is the first intensive work on dynamic parameter tuning for anomaly
detectors. The main idea behind our learning framework is that we predict an appropriate parameter
for upcoming traffic by considering the detection result of the past several traffic traces. We particularly
focus on the learning period t, which is the number of traces needed for parameter prediction. Intuitively,
t involves a trade-off between (a) a lower t, which leads to lower accuracy because there are fewer data
points to calculate statistics appropriately, and (b) a higher t, which will miss abrupt changes in the
macroscopic dynamics of anomalies in network traffic. We investigate this trade-off by evaluating an
anomaly detector based on the multi-scale gamma model [9], which is an unsupervised learning tool
and does not need predefined data, so this tool is promising for security and suitable for discussing
evaluation results. We analyze this tuning scheme with real traffic traces measured at a trans-Pacific link
over 9 years (15 min from 14:00 Japan Standard Time (JST) every day, and 24 h for some dates) with
pseudo ground truth generator validated by BLINC [15]. Thus far, some of these issues have been
addressed in our earlier work [13], and we have additionally (a) analyzed how predictable the ideal
parameter is with respect to periodicity and a random process and (b) extended the dataset including
9-year-long traffic traces and three sets of 24 h consecutive traces. The four main results obtained from
this work are that (1) the ideal parameter fluctuates daily and that (2) parameter learning with a longer
t is affected by significant events included in the period, and the appropriate t is about three traces
(days) for everyday 15 min traces and about 1.5 h for 24 h traces. We have also found that (3) the
performance degradation caused by introducing parameter learning is 17% with t = 3, and that (4) the
changes in the ideal parameter have no periodical correlation, and can be modeled as a random process
followed by a normal distribution. The contribution of this paper is to clarify and quantify the
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importance of setting dynamic parameters with statistics-based anomaly detectors in the real world, i.e.
it is ineffective to continuously use fixed values for parameters.

2. PRELIMINARIES

This section introduces three preliminaries involving an anomaly detection method (Section 2.1), traffic
traces collected over the long term and a traffic labeling scheme (or pseudo ground truth generator) to
evaluate detection performance (Section 2.2), and an automatic parameter tuning method (Section 2.3).

2.1 Anomaly detection algorithm based on Sketch and multi-scale gamma model

We use an algorithm based on Sketch and the multi-scale gamma model [9]. The reasons for adopting
this method are (a) the technical advantage of detecting low-intensity (hidden) anomalies on multiple
timescales, (b) the ability to detect unknown events deviating from dynamically calculated reference
data (i.e. no need for learning data or predefined anomalies), and (c) availability of an implementation
tuned practically. The appropriateness of using a multi-scale gamma model has been discussed
elsewhere [16]. The main idea underlying detection is to find outliers in the normalized values of
statistics computed from longitudinal behavior. The method is currently used in detecting source hosts
that generate anomalous traffic, and the overview of the detection procedure includes four steps:

1. Sketch: traffic is divided approximately into a set of sub-traffic from a source host. This is done
with the hash function of a quasi-huge hash table called Sketch [4] and using a source IP address
for hashing keys. This quasi-huge hash table is created with N hash functions of table-size M.

2. Multi-scale gamma model: for each piece of sub-traffic, the histogram for the number of packets
arriving during a certain timescale D is approximated as a gamma distribution. The gamma
distribution has two parameters: a determines the shape of the histogram, and b the scale. a is
helpful for detecting hidden anomalies. This approximation is conducted on multiple timescales
(D = D0 ¥ 2j with j = 0, . . . , 7), and the computed parameters are aggregated as one measure for each
a and b.

3. Anomaly identification: the a of the set of sub-traffic are compared each other, and the sub-traffic
having outlier a is an anomaly, that is, if |a - ma| > qa ¥ sa, the sub-traffic is judged to be an
anomaly, where ma and sa stand for the average and standard deviation of a among the set of
sub-traffic in the data, and qa is the threshold for a. The same technique is applied to b.

4. The above procedures are carried out for each time window T. A source host detected over at least
one window is regarded as one anomaly. The detector focuses on host that sends more than P
packets in a trace, which is referred to as an event, to calculate reliable statistics (a and b). Also,
a large amount of packets allows us to identify whether the detected traffic is truly an anomaly.

Since
α μ

σ
α

α

−
is a kind of Mahalanobis distance (i.e. a normalized metric), the threshold qa represents

the normalized degree of deviation from referential behavior. Hence lower qa leads to a higher number
of detected events, including all events detected by any higher qa.

For all traces, we empirically set N = 8, M = 32, P = 1000, and D0 = 5 ms, following Dewaele et al. [9],
and T = 15 min. Although the algorithm requires several parameters, we concentrate on a main
parameter qa and do not use qb, because the changes in the shape parameter clarify low-intensity
anomalies (i.e. qa can detect hidden anomalies better than qb), and the use of both thresholds leads to
complicated discussion on evaluation results. Also, detection by qa and by qb are independent, so this
choice for evaluation of learning is compatible with other studies using this anomaly detector. Also, this
detection tool empirically focuses on host traffic composed of more than 1000 packets per trace (which
we call an event), because larger numbers of packets allow us to identify abnormalities in detected
traffic. After this, the main threshold qa is referred to as q.
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2.2 MAWI dataset and predefined pseudo ground truth for computing detection performance

Rather than using synthetic traffic, we conduct our evaluation by using a measurement and analysis
of wide-area Internet (MAWI) traffic repository [17]. The traffic traces have been captured at a
trans-Pacific link between the USA and Japan (from 14:00 to 14:15 JST) since 2001, and they consist of
15 min pcap traces. The payloads of all packets were removed for all traces, and both source and
destination IP addresses were anonymized, preserving the prefix structure. The observed link had been
upgraded twice up to the end of 2009; the first was from 18 Mbps to 100 Mbps in July 2006, and the
second was from 100 Mbps to 150 Mbps in July 2007. The link was congested before the first upgrade.
In addition to the 15 min traces every day, we used some consecutive 24 h traces known as the Day in
the Life of the Internet (DITL) dataset [18] (these data are also collected at the same link and stored as
15 min traces). The long-term everyday traces and 24 h all-day traces will subsequently be referred to
as 15 min traces and 24 h traces.

We analyze 15 min traces from 1 January 2001 to 31 December 2009, and 24 h traces on 3 March 2006,
10 January 2010, and 19 March 2008. The long-term measurements make this dataset suitable for
investigating changes in optimal parameters for statistical anomaly detectors. In addition, the dataset
provides us with generality of results: time generality thanks to the long measurements, and link state
generality due to the two upgrades. Moreover, as these traffic traces are available to the public, using
this dataset adds reproducibility and comparability to our study. (Also, this dataset has been well
studied [9,19,20]). This dataset has 3098 traces from 1 January 2001 to 31 December 2009 (some traces
could not be provided because of measurement failures), i.e. 900 GB in size in the gzip file format. Even
though these 15 min traces are not consecutive (every 15 min throughout the day), the measurement
location and the start time (14:00 JST) for all traces are the same. Hence these traces are sufficient to
evaluate the algorithm’s ability to follow macroscopic (e.g. several days level) changes and microscopic
(e.g. hours or 1-day level) changes in traffic anomalies to be discussed.

We classify events into six categories (Attack, Victim, Warning, OK, Special, and Unknown) according
to the abnormality (or harmfulness) of the events by using our heuristics based on port number, TCP
flag, and communication structure as used in Himura et al. [13]. This heuristics is a hybrid made up
of a traditional approach (based on port number) and a state-of-the-art method (based on communi-
cation pattern [15]) to leverage the advantages of both. Table 1 lists the categories and examples of
heuristics, and we show all rules to identify Attack events in Appendix A. Also, we validate these
heuristics in Appendix B by Reverse BLINC used in Kim et al. [21], showing that these heuristics can
uncover more Attack events, including those identified by BLINC. Here, we define Anomalous as
including both Attack and Victim categories, and we define Normal as including Warning, OK, Special,
and Unknown categories. We found out that most Unknown events are generated by P2P software as
shown in Appendix B. Figure 1 shows the classification results of the MAWI dataset, plotting the
number of events in a trace. Figure 1(a) shows the evolution of the breakdown over 9 years. The
continuously high number of Anomalous events in the last half of 2004 is due to the massive outbreak
of a worm. The other figures show that of 24 h traces: (b) 3 March 2006, (c) 10 January 2007, and (d)
19 March 2008. For each figure, there are constant number of Anomalous events, whereas Normal
events represent the daily periodicity. With these data, we can identify whether an event reported by
the anomaly detector is an actual anomaly or not, so that these heuristics enable us to investigate
parameter learning.

2.3 Automatic parameter tuning and learning period

Here we explain the automatic parameter tuning method, which is schematically represented in
Figure 2. The basic idea behind this method is that the optimal threshold for upcoming traffic on date
t (referred to as qt(t)) is determined to be the one that has produced the best accuracy (detection
performance a(qt(t - 1))) in the past t traffic traces on dates t - 1, . . . , t - t. We define this t as the
learning period. The detailed procedure to determine qt involves five steps. (modification note: we use
qt(t) instead of qt if needed.)
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1. The initial optimal parameter is empirically set to qt(0) = 1.7. This value is used only during the
beginning of parameter learning, i.e. we do not have t traces in the past for learning (i.e. while
t < t), and once qt(t) is determined then the initial value is no longer used. In our experiment, t = 0
is the date 1 January 2001, t = 1 is 2 January 2001, and so on.

2. Run the anomaly detector on the past t traces while changing qt(t) (increase it by d = 0.1 from 0.0)
to find a (local) maximum.

3. Compute the performance of the past detection a(qt(t)) for each qt(t) as a t
A

A N
θτ ( )( ) =

+
, where A

and N are the total counts of Anomalous and Normal events detected with the threshold qt(t).
4. Find the optimal threshold for date (t + 1), which produces the (local) maximum in performance:

θ θτ θ α
opt t a t+( ) = ( )( )1 arg max that satisfies a(qt(t)) - d ) < a(qt(t)) and a(qt(t)) + d) < a(qt(t)). d is also

empirically determined, and the selection of d has a trade-off between precision of optimization
and possibility of failing in finding the optimal value; for example, e << d leads to
a(qt(t)) = a(qt(t) + e) in most cases, and it fails to find appropriate θτ

opt satisfying the above
condition.

Table 1. Categories and examples of heuristics. Attack and Victim events are regarded as
Anomalous category, whereas events of the other four categories are referred to as Normal category.

All heuristics to identify Attack events are listed in Appendix A

Category Explanation of category Example of heuristics

Attack The host sends many
malicious packets

If SYN flagged packets account for more than 20%
of all packets, then the host is regarded as ‘an
attacker of SYN flooding attack’ and the event
is classified into the Attack category

Victim The host receives many
malicious packets

If the ratio of SYN/ACK flagged packets is more
than 20%, then the host is regarded as ‘a victim
of a SYN flooding attack’ and the event is
classified into the Victim category

Warning The host is legitimate,
but can be malicious
in some cases

If over 50% of packets are HTTP requests, then
the host is regarded as ‘a sender of many HTTP
requests’ and the event is classified into the
Warning category

OK The host is legitimate If more than 50% of packets are from source port
80, then the host is regarded as ′a web server’
and the event is classified into the OK category

Special The host is a server or
client of a specific
application such as
DNS, FTP, mail, or
P2P

If more than 50% of packets are from source port
53, then the host is regarded as ‘a DNS server’
and the event is classified into the Special
category

If (a) higher source and destination ports account
for more than 50% of total port usage, (b) the
most dominant host-to-host traffic accounts for
less than 30% in the number of packets, and (c)
the host sends packets to more than 10
destinations, then the host is regarded as ‘a P2P
application user’ classified into the Special
category

Unknown The host is not classified
into any of these
categories

If the host cannot be classified into any of these
categories, then the event is classified into the
Unknown category (most of them related to P2P
by BLINC validation. See also Appendix B)
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5. If there is no qt(t) satisfying the above condition to determine θτ
opt t +( )1 , θτ

opt t( ) for the previous
traffic trace is used for detecting anomalies in upcoming traffic: θ θτ τ

opt optt t+( ) = ( )1 . The same policy
is used if there are no traffic traces of corresponding t dates.

Anomalies are detected separately for each 15 min traffic trace, and A is the total number of detected
Anomalous events over the past t days (the same for N), whereas the consecutive 24 h traces are
concatenated into one trace in order to avoid recounting an anomaly event existing in more than one
traces. We define the learning with 15 min and 24 h traces as 15 min and 24 h learning.

This procedure for parameter learning is not specific to the anomaly detector; learning is an
optimization problem (i.e. finds the best solution that maximizes a function), and it can be applied to
other parameters of different anomaly detectors. Also, this procedure is applicable to optimize multiple
parameters; that is, the learning is a kind of combinatorial optimization. Searching optimal parameters
is enhanced by traditional methods such as hill climbing, simulated annealing, or genetic algorithm.

The performance a(qt(·)) can be interpreted as detection efficiency—the percentage of the number of
detected Anomalous events over that of total detected events—and θτ

opt ⋅( ) maximizes this. In this sense,

Figure 1. Breakdown of MAWI dataset: (a) 9-year 15 min traces, and 24 h traces on (b) 3 March
2006, (c) 10 January 2007, and (d) 19 March 2008. An event is defined as a source host that sends

over 1000 packets per trace

threshold qt

performance  a(qt)

Upcoming traffic

Optimal parameter estimation by using past 
traffic data (τ=4)

Time
CurrentPast

qt
opt

tracetracetracetracetracetrace trace

Heuristics to 
identify Attacks

Offline 
anomaly
detection Online 

anomaly
detection

Figure 2. Method of parameter learning. Optimal parameter θτ
opt for upcoming traffic is estimated

by using past t traffic traces; θτ
opt maximizes the detection performance of the past t traces

(t = 4 in this figure)
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detected Normal events can be interpreted as false alarms. Although this metric is different from the
common performance metrics (i.e. the false positive rate or the false negative rate), a(qt) is more suitable
for determining θτ

opt ⋅( ) ; these common metrics must take into consideration all undetected events, but
we may not necessarily be able to identify them. Also, since no classification method (ground truth
generator) is perfect, we must consider misclassified events (e.g. some of the Unknown events are
actually Anomalous). Both the denominator and numerator used by the two common metrics are
affected by misclassifications, whereas the denominator of a(qt(·)) is not affected because A + N is the
total number of detected events. Another reasonable choice of performance metric might be to remove
Unknown events from denominator and numerator from the common two metrics, but since we
manually found most of the Unknown events are P2P, this removal of Unknown would lead to
overestimation of performance. Another way to quantify performance is scoring detection results
according to abnormality of detected events (1 point for Attack, -1 point for OK, and so on). However,
since it is generally difficult to set reasonable weights of abnormality, we focus only on Anomalous
events, which should be detected first. Therefore, a(qt(·)) is more suited to computing θτ

opt.
Figure 3 shows an example of parameter determination. The x-axis is the value of qt and the y-axis

plots the fraction of detected events of a category over the total number of detected events. Figure 3(a,
b) shows the detection results of past t = 1 and t = 28 days since 6 December 2005. The performance
a(qt) is the fraction of Attack (red) and Victim (blue) events over the total number of detected events.
Since no Victim events were detected on this day, a(qt) is identical to that plotted by the red line.

• The best performance in Figure 3(a) is provided by qt(t) ∈ [4.4,4.6], because a(qt(t)) = 1.0 (i.e. 100%).
However, these parameters are not reasonable due to the few detected events (only one event is
detected and many Anomalous events have been missed). When only a few events are detected,
a(qt(t)) exhibits the step-like curve as shown in Figure 3(a) (i.e. this means a(qt(·)) = a(qt(·) + d ) and
does not satisfy the condition in step 4). Hence choosing a local maximum is better for retaining
a reasonable number of detected events. Here, we have one local maximum at qt(t) = 1.8, and four
Anomalous events are detected, and thus θτ

opt t +( ) =1 1 8. . Conversely, only one Anomalous event
is detected for qt > 2.0.

• The qt = 2.4 in Figure 3(b), on the other hand, is optimal according to our heuristics. Thus a large
amount of learning data makes it easier to determine a good θτ

opt, and θτ
opt t +( ) =1 2 4. .

Thus far, we have found that the typical longitudinal pattern of events detected by using a tuned qa

is continuous, such as that in Figure 4(a). However, there are few spiky traffic patterns such as that in
Figure 4(b), while a tuned qb would detect more. Since spiky traffic is easily detected unlike continuous
traffic, this finding also supports our motivation to discuss qa prior to qb.
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Figure 3. Example of determining optimal parameter θτ
opt : (a) t = 1 day of learning; (b) t = 28 days

of learning. Detected events are classified into six categories by the pseudo ground truth generator
based on our heuristics. The detection performance is the summation of Attack (red)

and Victim (blue)
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Intuitively (but not analyzed with real traces), t has a trade-off:

• When t is lower, θτ
opt cannot be determined because there are few data points to obtain

appropriate statistics.
• When t is higher, θτ

opt is not suitable because a longer t causes unexpected delays, affecting the
ability to follow macroscopic changes in anomalies.

Thus we need to find an appropriate value for t.
To evaluate the effect of parameter learning on detection performance, we compare detection results

of predicted threshold θτ
opt t( ) and the ideal threshold θ0

opt t( ) which leads to the best performance for
detecting anomalies in upcoming traffic (we use t = 0 to explain this ideal parameter). We define θ0

opt t( )
as maximizing the detection performance of upcoming traffic on date t θ θ0 0

opt t a t( ) = ( )( )arg max ,
whereas θτ

opt t( ) maximizes the detection performance of past t traces on dates t - 1, . . . , t - t. We will
refer to θτ

opt ⋅( ) as qt(·), because we will only discuss the changes in the optimal threshold, and we
basically omit ‘(t)’ from qt(t) if t is not needed to discuss the results.

3. EVALUATION

To discuss the automatic parameter tuning, we study the changes in optimal parameters qt (Sections
3.1 and 3.2), an appropriate t, and the performance degradation in anomaly detection caused by
introducing parameter learning (Sections 3.3 and 3.4), the predictability of the ideal parameters (Section
3.5), and the difference between 15 min and 24 h learning (Sections 3.6 and 3.7).

3.1 Changes in values of optimal parameter and number of detected events

First, we assess changes in the value of optimal parameter qt for 15 min learning with some fixed
learning periods t. Figure 5 plots the transition in qt from the beginning of 2001 to the end of 2009. The
upper figure depicts microscopic (day-to-day) changes in q0 (the ideal parameters), while the lower
figure plots macroscopic (monthly) changes in q0 (ideal) with the red line, q3 (3 days of learning) with
the green line, and q28 (28 days of learning) with the blue line, plotting the averages and standard errors
for each month. The x-axes plot the dates, and the y-axes have the values of qt in both figures. The
upper figure indicates that the ideal parameter q0 fluctuates day by day around q0 ª 1.5. The average
and standard deviation of q0 for 9 years are 1.43 and 0.57. The fluctuations in q0 emphasize how
important it is to dynamically tune parameters for statistics-based anomaly detectors, because q0 is not
stable over time. On the other hand, the lower figure shows that the parameter prediction with a higher
t (blue) leads to a larger deviation in the value of qt from the ideal parameter (red) than that with a
lower t (green). Since Pearson’s correlation coefficient between q0 and q3 is 0.80, but that between q0 and
q28 is 0.35, a higher t fails to follow the changes in q0. A significant case is the change in qt from April
2003 to May 2003. The q0 decreases from 1.54 to 1.25, but q28 increases from 1.52 to 2.91, whereas q3

varies from 1.80 to 1.82. The high value of q28 during May 2003 derives from qt = 3.9 from 14 May 2003
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Figure 4. Example of anomalous traffic detected by tuned qa: (a) typical traffic and (b) atypical
traffic. Both types of traffic are judged to be ‘SYN flooding attacks’
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to 22 May 2003. By manually checking this cause, we found that the data from 24 April 2003 and 12
May 2003 had an influence on q (one Anomalous event is detected with q28 = 3.9 for the traces of 24
April 2003 and 12 May 2003, respectively). The data from 12 May 2003 triggered the q28 = 3.9 from 14
May 2003, and the q28 = 3.9 rapidly decreased when the date of 14 April 2003 was beyond the range of
the past t days. This case study also points out the inefficiency of a longer t. A higher t, on the other
hand, yields a higher and more fluctuating qt over 9 years, but the standard deviation of each plot (i.e.
the variance within a month) is small. The averages and standard deviations of the plots are 1.42 � 0.23
for q0, 1.78 � 0.32 for q3, and 2.26 � 0.62 for q28. A plausible reason for the inappropriateness of a longer
t is that the prediction of optimal qt can be affected by significant events during the learning period,
and these events will fix qt to a certain value.

Figure 6(a–c) highlights the microscopic (day-to-day) changes in q0, q3, and q28 (from November 2005
to April 2006), and Figure 6(d–f) presents the results of anomaly detection with the thresholds
determined from parts (a–c), plotting the number of detected Anomalous and Normal events. The
x-axes are the dates, the y-axes in the upper figures are the values of qt, and the y-axes in the lower
figures are the values of detected events (red: Anomalous events; green: Normal events). Obviously, a
higher t is inappropriate for estimating the optimal threshold, because q28 stably remains higher and
there are fewer detected events than those with q0. The stable values of q28 also reminds us of the
influence of significant events on determining qt. In other words, the parameter estimation with a
longer t cannot follow the changes in anomalous traffic. Thus learning with a longer t is inappropriate
for obtaining a suitable qt to detect anomalies in practice, and we need to find an appropriate t.

Consequently, the ideal threshold q0 fluctuates daily, and a longer learning period (higher t) produces
higher and more stable qt, which decreases the number of detected events. The next section discusses
our further investigations into the reason for worsened performance caused by a longer learning
period.

3.2 Variable learning period

We study the strong influence of specific events on the estimates of optimal threshold qt by computing
the best performance with unfixed t among [0,28]. We choose an optimal learning period of
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Figure 5. Changes in qt for 15 min learning: (a) microscopic (daily) changes in ideal threshold q0; (b)
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threshold q0 fluctuates daily, and longer learning period t leads to higher and more unstable qt
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τ θτ= ( )arg max a , and investigate changes in the values of τ and θτ . Figure 7 plots the results with
the data from November 2005 to April 2006. The x-axes are the dates, the y-axis in Figure 7(a) is τ , and
the y-axis in Figure 7(b) is θτ derived from Figure 7(a). In Figure 7(a) there are several slanted lines with
a slope of one, which means that some data had a strong influence on determining qt during the period
of t days that included these influential traces (until t reaches 28, i.e. the upper bound of our
experiment). To investigate the reasons for this effect, we inspect labels A and B, which are two of the
roots of these lines.

A: Data for 9 September 2005 (label A) set θτ = 2 6. . The detected events on the data consist of five
Attacks.

B: The combination of data from 18 and 19 December 2006 (label B) sets θτ = 2 5. . This threshold
detected three Attacks, four Warnings, and one Unknown.
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Since such events have a strong effect on a(qt), variable t is inappropriate to follow the macroscopic
changes in Internet traffic. In addition, the changes in θτ for variable t (Figure 7(b)) are almost the same
as those for t = 28 (Figure 6(f)), and the performance with τ is lower than that with t = 3. Thus t must
be appropriately fixed, and we discuss our evaluation of this in the following section.

3.3 Optimal learning period

Now let us discuss the most appropriate learning period for setting the automatic and dynamic
thresholds. Figure 8 summarizes the detection results and performance as a function of learning period
t with different periods of data: (a) the last half of 2004; (b) the first half of 2006; and (c) the first half
of 2008. The x-axes are t (from 1 to 28 days), the left-hand y-axes plot the number of events detected
with qt (red: Anomalous; green: Normal), and the right-hand y-axes depict the detection performance
a(qt) (blue). Each plot shows the averages and their standard errors in the 15 min detection results for
a half year. In the last half of 2004 there was a massive outbreak of a worm lasting until the end of this
year. This caused the t-independent result shown in Figure 8(a); any t retains certain values for the
number of detected events and performance. This should derive from the long-term dominance of only
one kind of anomaly. In contrast, for other periods (Figure 8(b, c)), we can confirm the trade-off in t.

• The red and green lines indicate that a longer t yields to fewer detected events than a shorter t. This
is because a longer t results in high qt (Figure 6), and a higher qt leads to fewer detected events.

• The blue line explains that a shorter t (1 or 2 days) leads to worsened performance; i.e. a shorter t
cannot obtain a sufficient amount of data to appropriately determine qt.

The increasing value of performance for shorter t means that the decrease in the number of detected
Normal events is larger than that of Anomalous events; that is, parameter learning with appropriate
t can follow the trends in anomalies. From these results, we can conclude that a t of around 3 is
empirically the most appropriate because a(qt) is larger and the number of detected Anomalous events
is also higher in our dataset. In addition, we compare the performance a(qt) with the percentage of
Anomalous events in the original dataset—(a) 30.5%, (b) 8.2%, and (c) 7.4%—which are indicated by
the gray lines in the figures. Increase in a(qt) with respect to the percentage for any t in Figure 8(b, c)
indicates the algorithm’s efficiency. Conversely, in Figure 8(a), the scanning activities of the worm form
statistical referential behavior, so that they spoil the anomaly detection method.

3.4 Performance degradation caused by introducing parameter learning

Next, we compare the performance of 15 min learning with t = 0 (the ideal threshold) and that with
t = 3 (the most appropriate prediction of qt) in Figure 9. The x-axis is the date, the y-axis in Figure 9(a)
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is the number of detected Anomalous events, and the y-axis in Figure 9(b) is the fraction of the number
of detected Anomalous events over that of all detected events for each day. In both figures, the gray lines
plot the results for t = 0 (Figure 6(d)), and the red lines plot those for t = 3. Figure 9(b) represents the
degradation in performance of parameter learning; however, the degradation is acceptable for detecting
anomalies in practice. The performance with parameter learning worsens by 16.6% on average, and its
standard error is 9.2%. Also, learning reduces the number of detected anomalies by about 50%
(Figure 9(a)). t = 0 results in 10.8 � 1.3 detected Anomalous events, whereas t = 3 produces 5.4 � 0.9.

3.5 Predictability of ideal threshold

In addition to evaluating degradation in detection performance, we investigate the predictability of q0

for upcoming traffic from the past q0 by doing time series analysis. This is also practically important
for real-time anomaly detection.

First, we inspect the time correlation of q0 for 15 min learning, and Figure 14 highlights

the results of (a) autocorrelation R t
n n t
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2θ πexp , where q0(n) is q0 on date n as shown in Figure 5(a). Here, q0(0) is

the estimated threshold of 1 January 2001 (q0(1) is that of 2 January 2001, and so on), μθ0 and σθ0
2 are

the average and variance of q0(·), p is the circle ratio, and i is an imaginary unit. N is the total number

Figure 9. Performance degradation caused by introducing parameter learning: (a) number of
detected Anomalous events; (b) performance for t = 0 and t = 3
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link during 2008 (related to Figure 6(a, b)). q0 can be treated as a random process followed by

normal distribution
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of q0(·), i.e. N = 1826 days for the sequence from 1 January 2001 to 31 December 2005, so that we can
avoid the long-term lack of data in 2006. These two figures reveal that there is no strong periodic
correlation in q0. Also, the low value of Rqq(t) for lag t = 1,2,3 represents almost no time correlations
among consecutive q0(·). These results also imply that anomalous traffic does not have significant
periodicity, and the optimal learning period t = 3 shown in the previous section results from the
well-balanced amount of data rather than the macroscopic tendencies of anomalies, i.e. shorter learning
leads to insufficient amount of information for estimating q0(·), while longer learning is affected by
events on significant days, so that it cannot follow fluctuating q0(·). In summary, the nonexistence of
periodicity in q0(·) suggests that we have to find alternative methods to predict q0(·) for upcoming traffic.

Second, we investigate how much q0(·) changes daily. Figure 10 displays the distribution of differ-
ences in the values of qt (i.e. qt(n) - qt(n -1)) for (a) t = 0 and (b) t = 3 during 2008 (Figure 6(a, b) shows
the changes in the values of qt(·) for both t). The x-axes represent the day-to-day differences in qt(·), and
the y-axes count the frequency of the differences. The histogram in Figure 10(a) is bell-shaped, and we

fit it as a normal distribution f x
x( ) = − −( )⎛

⎝⎜
⎞
⎠⎟

1
2

2

2πσ
μ

σ
exp with m = 0.00 and s = 0.78; that is, the q0(·)

for upcoming traffic is predicted to be the same as that for the previous day’s traffic with a prediction
error of 0.78 ¥ 2 at 95% probability, according to the two-sigma rule. The histogram in Figure 10(b), on
the other hand, is more skewed (m = 0.01 and s = 0.56). Considering that a longer t leads to higher
counts in 0, this figure also implies that events on significant days influence the determination of qt.
To obtain a better approximation of this model, we may use zero-inflated models, even though the
model of the changes in q3(·) makes less practical sense.

In summary, the changes in q0(·) have no temporal correlation, and represent a random process
followed by a normal distribution (i.e. we observed few significant jumps in the changes in q0(·)).

3.6 Parameter learning with consecutive 24 h traffic traces

We evaluate 24 h learning, i.e. parameter learning with the consecutive 24 h traces measured on the same
link (also stored in the same repository as 15 min traces). The same set of parameters for 15 min learning
is applied to that of 24 h learning. However, this 24 h learning is slightly different from the 15 min one
in that the anomaly detection method is run for consecutive traffic traces to avoid repeatedly recounting
an anomaly event included in more than one trace. Therefore, as the number of events detected with 24 h
data will be fewer than that with 15 min data, the amount of data required should be larger.

Figure 11(a–c) highlights the changes in the value of qt for (a) t = 0, i.e. the ideal threshold, (b) t = 4,
i.e. 1 h of learning, and (c) t = 12, i.e. 3 h of learning. Also, Figure 11(d–f) shows the changes in the
number of Anomalous and Normal events detected with qt in the above figures. The x-axes plot
the dates, the y-axes in the upper figures are the values of qt, and the y-axes of the lower figures are
the number of detected events. The fluctuations in qt and the number of detected events with 24 h
traces are similar to those with 15 min traces (Figure 6). Also, a longer t leads to higher and continuous
values for qt, which results in fewer detected events. The averages and standard deviations of optimal
thresholds qt are (a) 1.43 � 0.49 for t = 0 (ideal), (b) 1.74 � 0.59 for t of 1 h, and (c) 2.45 � 0.59 for t of
3 h. In addition, the averages and standard errors for the number of detected events are (d) 69.2 � 13.9
for Normal and 5.8 � 1.1 for Anomalous, (e) 53.0 � 16.8 for Normal and 4.5 � 1.3 for Anomalous, and
(f) 4.6 � 1.6 for Normal and 0.6 � 0.2 for Anomalous. This also suggests that an appropriate value for
t can be chosen to efficiently detect anomalies on an hourly scale.

Figure 12 plots the performance as a function of t with the data from (a) 3 March 2006, (b) 10 January
2007, and (c) 19 March 2008. For each figure, the x-axis represents the value for t, the left-hand y-axis
plots the number of detected Anomalous (red) and Normal (green) events, and the right-hand y-axis
shows the performance (blue). Both y-axes plot the average values with standard errors in 24 h traces.
These figures reveal that the number of detected events decreases with the increase in t, and
appropriate learning periods are (a) t = 7, i.e. 1.75 h, (b) t = 6, i.e.1.5 h, and (c) t = 3, i.e. 0.75 h,
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considering both the performance and the number of detected events. These t balance the trade-off
between the amount of information to determine qt versus the influence of significant events on
parameter learning. In addition, the average percentages of Anomalous events for each trace in the 24 h
traces without detection are (a) 7.6%, (b) 5.1%, and (c) 9.6%, as plotted by the gray lines in the figures.
These figures also indicate the algorithm’s efficiency because any increase in the percentage of detected
Anomalous events resulted from the anomaly detector.

Therefore, qt also fluctuates on an hourly scale, and an optimal qt should be determined with a
well-balanced number of past traces (e.g. about 1.5 h). We note that q on a minute scale cannot be
discussed, because a few minutes of traffic have too little information to detect statistical outliers.

3.7 Performance comparison between 15 min and 24 h learning

Finally, we study the difference between 15 min and 24 h learning. Since the datasets for both types of
learning have overlap traces starting from 14:00 on the dates that 24 h measurement were conducted,
these two types can be compared by using past t traces since 14:00 on these dates. Figure 13 compares
the two types of learning with three microscopic (daily and hourly) examples: (a) 3 March 2006; (b) 10
January 2007, and (c) 19 March 2008. All the x-axes are the learning periods t (t = 1 means 1 day for
15 min learning and 15 min for 24 h learning), the y-axes of the upper figures plot the values for qt,
those of the middle figures show the number of detected Anomalous and Normal events, and those of
the lower figures highlight the detection performance a(qt).

The upper figures show two similar lines of 15 min and 24 h learning on the same date, though the
lines of 15 min learning vary among the three dates (also for 24 h learning). A possible reason for these
similar lines is that the characteristics of Internet traffic anomalies fluctuate on at least an hourly scale,
so the results for 15 min and 24 h learning do not present significant differences. Also, the learning
method can be applied on both a daily scale and an hourly scale. Additionally, the middle figures
indicate that the number of events detected with 15 min learning is higher than that with 24 h learning
for (b) and (c), so 15 min learning can macroscopically (roughly) capture changes in anomalies.
However, 15 min learning cannot detect any Anomalous events in case (a). On the other hand, the lower
figures also reflect the optimal t of t = 3 for 15 min learning, and t = 6,7, and 8 for 24 h learning,
considering the balance between the number of detected events and the detection performance. 24 h
learning provides better performance than 15 min learning on average, so 24 h learning can capture
microscopic (subtle) changes in specific anomalies.

Here we present an example of events detected by q3 for 15 min learning and q8 for 24 h learning on
19 March 2008. For upcoming traffic, 15 min learning detected three Anomalous (two continuous and
one spiky) and six Normal (one continuous and five spiky) events, whereas 24 h learning found one
Anomalous (spiky) and one Normal (continuous) event. For learning traffic, 15 min learning extracted
six Anomalous (four continuous and two spiky) and 14 Normal (12 continuous and two spiky) events,
while 24 h learning uncovered six Anomalous (six spiky) and eight Normal (eight continuous) events.
The detector with 15 min learning was tuned to detect continuous Anomalous events, because those
kinds of events were dominant in the learning traces. On the other hand, the detector with 24 h learning
was tuned to find spiky Anomalous events due to the dominance of spiky anomalies in the learning
data. Hence the learning method could capture the typical behavior of Anomalous events.

Therefore, the characteristics of 15 min learning and 24 h learning are similar, so the parameter tuning
method can be applied to both daily and hourly scales.

4. DISCUSSION

4.1 Trends in traffic usage and changes in optimal parameter

The MAWI link has been upgraded twice and the application breakdown is evolving (Figure 1), but
changes in optimal parameter (θ0

opt) do not follow the upgrade or evolution, unlike other observations
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in the 3G network [14]. Since threshold qa indicates the degree of normalized deviation from referential
statistics, the changes in θα

opt should be affected by anomalies changing day by day. This explanation
can be supported by the trends in referential behavior (unnormalized average a and b) shown in
Himura et al. [22]. The average values of a and b evolve according to traffic breakdown and link
upgrades.

4.2 High degree of variability in optimal parameter

Our results illustrate the importance of dynamic parameter tuning in statistical methods for detecting
anomalies so that they can be deployed in the real Internet. An inappropriate parameter significantly
degrades detection performance, because the performance is not constant relative to the value of the
parameter. In addition, even if we set an optimal parameter at a certain time, we cannot use the same
value consistently, because the optimal parameter is not invariable, as shown in Figures 5, 6, and 11.
This feature is not specific to our method. Since Internet traffic includes the trade-off, other methods
are also likely to require parameter tuning at daily and/or hourly levels so that they can follow the
macroscopic behavior of network anomalies. Also, our results show that supervised learning-based
anomaly detectors must consider their training dataset (e.g. the amount of traces).

4.3 Typical timescale of anomalous traffic

The comparison between 15 min and 24 h learning (Figure 13) points out the influence of the number
of events on parameter learning, so the microscopic trends in anomalous traffic on hourly and daily
scales are weak. Also, the weakness of the trends in anomalous traffic can be confirmed by the highly
variable q0 (Figure 5(a)) and the nonexistence of periodicity of q0 (Figure 14). On the other hand,
Figure 5(b) plots the transition in typical q0 for each month, so fluctuating q0 should form macroscopi-
cally standard anomalous behavior on a large scale (e.g. monthly levels), but higher t cannot capture
this trend because it is affected by significant events. Consequently, the trends of anomalous traffic are
weak on each timescale from the viewpoint of parameter learning, and the number of events and
existence of significant events have stronger influence on determining optimal parameters.

4.4 Practical use of parameter learning

To use parameter learning in real situations, one can predict an optimal threshold for upcoming traffic
by evaluating the detection performance of the past t traces before detecting anomalies in upcoming
traffic. The t can be set to 3 if one captures snapshots of a certain time on each day, and can be set to
around 1.5 h if one measures consecutive traces. Also, 15 min and 24 h learning can be combined to
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Figure 14. Frequency analysis of changes in q0 of 15 min learning for 18 Mbps link (related to
Figure 6(a)). Changes in q0 have no strong frequency, i.e. there is no typical periodicity in q0
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predict an optimal threshold, and this prediction will be more robust in detecting anomalies, because
the combination of the two types of learning considers both subtle and rough changes in anomalous
behavior of Internet traffic.

4.5 Advantage of using multi-scale gamma model

Figures 5, 6, and 11 indicate that the ideal parameter q0 is quite scattered, so that the macroscopic
behavior of the anomalous traffic exhibits no typical patterns. In addition, since a determines the shape
of the histogram for the number of packets on a certain timescale, the multi-scale gamma model can
follow the fluctuating traffic patterns; otherwise qa would be constant. Also, Figures 8 and 12 indicate
the efficiency of the detection algorithm, as previously discussed. Therefore, the anomaly detector based
on the multi-scale gamma model is a promising approach.

4.6 Events of strong effect on parameter prediction

Figures 6, 7, 8, and 11 suggest that parameter learning is strongly affected by significant traces. Such
a trace provides high performance a(q) for a certain q, plausibly because of high number of detected
Anomalous events with higher thresholds, etc. One way to avoid the influence of specific data is to use
time series forecasting methods, e.g. to impose moving weights on the past data, while another way
is to adopt a median value of qt among ideal parameters q0 of each of past t traces. We will enumerate
possible learning methods and evaluate them in the future.

4.7 Formal expression of determining appropriate learning period t

In this paper we selected appropriate t by balancing the detection performance a(qt) and the number
of detected Attack events. Since the number of detected events can be interpreted as the fraction of
undetected (missed) Attack events over total Attack events b(qt), one way to formulate the balance is

to use weighted harmonic mean between a(qt) and b(qt):
1

1
1

1
w w

bα
+ −( )

with w ∈ [0.1]. The weight w

is a parameter to be determined manually according to whether a(qt) (or b(qt)) should be focused or not,
and we can computationally obtain an appropriate t maximizing the harmonic average.

5. CONCLUSION

We have discussed automatic and dynamic parameter tuning (defined as parameter learning) for a
statistics-based anomaly detector. The main idea underlying parameter learning was that we predicted
an appropriate parameter for upcoming traffic by considering the results of detection over the past
several traffic traces. We assessed this learning method by evaluating a statistical anomaly detection
method with real traffic traces measured at a trans-Pacific link over 9 years (15 min from 14:00 JST every
day and 24 h for some dates) with pseudo ground truth generator validated by BLINC. We also
analyzed the predictability of the ideal parameter with respect to periodicity and a random process.
Our main findings were as follows. (1) The ideal parameter fluctuates daily. (2) Parameter learning with
a longer t is affected by significant data included in the period, and the appropriate t is about three
traces (days) for learning with daily 15 min traces and around 1.5 h for that with 24 h traces. (3) The
performance degradation caused by introducing parameter learning is 17% with t = 3 for the daily
15 min traces. (4) Even though the changes in the ideal parameter had no periodicity, it could be
modeled as a random process followed by a normal distribution. Our contribution was to clarify and
quantify the importance of setting dynamic parameters for statistical methods of detecting anomalies
in network traffic in the real world; i.e. it is ineffective to use fixed values for parameters. In future
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work, we intend to extend the evaluation of parameter learning to other learning schemes and other
anomaly detection methods with multiple parameters, by using traffic traces collected on other links
as well as improving the classification framework.

APPENDIX A: HEURISTICS TO IDENTIFY ATTACK EVENTS

Table 2 lists the rules to identify Attack events. The set of rules is derived from our best knowledge
based on port, flag, and communication pattern of traffic, and used in creating pseudo ground truth.
The heuristics basically focus on scanning activity, flooding attack, and strange use of TCP traffic.

APPENDIX B: VALIDATION OF CLASSIFICATION HEURISTICS WITH BLINC

We compare our heuristics with Reverse BLINC used in Kim et al. [21], whose parameters are set to the
default values. Since BLINC is a flow-level traffic classifier, we converted its outputs into host level by
finding the most dominant category in a host (except for unknown). Table 3 displays the comparison
by using the hosts (events) observed in traces of every 15th from January to December 2008, and the
table shows the following:

• Attack events: since BLINC only classified host scans in terms of harmful traffic, there are
unclassified events such as SYN flooding attacks and ICMP traffic. Also, our classification results
include most of the scan labeled by BLINC (191 of 193).

• Unknown events: BLINC outperforms our heuristics in terms of unknown traffic. Since most
events unclassified by our heuristics are P2P and none of them is an attack, BLINC is useful in
reducing the fraction of unknown events.

In summary, our Attack heuristics outperform the attack detection part of BLINC rules. BLINC can
be used in reducing the amount of unknown events, which are mainly P2P traffic.
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